SÉminaire de probabilités (Strasbourg)

Kalyanapuram Rangachari Parthasarathy
 Realisation of a class of Markov processes through unitary evolutions in Fock space

Séminaire de probabilités (Strasbourg), tome 25 (1991), p. 31-36
http://www.numdam.org/item?id=SPS_1991_25__31_0
© Springer-Verlag, Berlin Heidelberg New York, 1991, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

by
K.R. Parthasarathy
Indian Statistical Institute Delhi Centre, New Delhi-110016

1. Introduction: Pursuing the chain of ideas initiated in $[1,2,3]$ and further discussed in [4] we modify the notations of quantum stochastic calculus in Fock space and demonstrate how a class of continuous as well as discrete state space Markov processes can be realised through unitary operator evolutions in the tensor product of an initial Hilbert space with a boson Fock space.
2. The basic results of quantum stochastic calculus in a new notation: Let

$$
\begin{equation*}
\tilde{H}=h_{0} \otimes \Gamma\left(L^{2}\left(I R_{+}\right) \otimes k\right) \tag{2.1}
\end{equation*}
$$

where h_{0} and k are complex separable Hilbert spaces and for any Hilbert space H $\Gamma(H)$ denotes the boson Fock space over H. Put

$$
\begin{equation*}
h=h_{0} \otimes\left(\mathbb{C} e_{-\infty} \oplus k \oplus \mathbb{C} e_{\infty}\right) \tag{2.2}
\end{equation*}
$$

where $e_{ \pm \infty}$ are unit vectors and \oplus indicates Hilbert space direct sum. Fix an orthonormal basis $\left\{e_{i} \mid i \in S\right\}$ in k and put $\tilde{S}=S U\{-\infty\} U\{\infty\}$. The basic noise processes $\left\{\Lambda_{j}^{i}\right\}$ of boson stochastic calculus in \tilde{H} can be expressed as

$$
\begin{aligned}
& \Lambda_{i}^{j}=\Lambda\left|e_{i}><e_{j}\right|, \quad i, j \in S, \\
& \Lambda_{-\infty}^{j}=\Lambda\left|e_{-\infty}><e_{j}\right|^{\prime}=A_{j}, j \in S, \\
& \Lambda_{i}^{\infty}=\Lambda\left|e_{i}><e_{\infty}\right|=A_{i}^{\dagger}, i \in S, \\
& \Lambda_{-\infty}^{\infty}(t)=t I, \quad t \geq 0
\end{aligned}
$$

where $\Lambda_{i}^{j}, i, j \in S$ are the conservation (or exchange) processes, $A_{j}, j \in S$ are
the annihilation processes and A_{i}^{\dagger}, $i \in S$ are the creation processes. We adopt the convention that $\Lambda_{i}^{-\infty}=\Lambda_{\infty}^{j}=0$.

Inspired by a conversation with V.P.Belavkin in Moscow in 1989 we introduce a subalgebra $I(h) \subset B(h)$ with a special involution as follows:

$$
\begin{align*}
& I(h)=\left\{L \mid L \in B(h), L £ \otimes e_{-\infty}=L^{*} f \otimes e_{\infty}=0 \text { for all } f \in h_{o}\right\}, \tag{2.3}\\
& L^{b}=F L^{*} F \tag{2.4}
\end{align*}
$$

where $B(h)$ is the algebra of all bounded operators on h and F is the unique unitary (flip) operator in h satisfying

$$
F f \otimes e_{-\infty}=f \otimes e_{\infty}, F f \otimes e_{\infty}=f \otimes e_{-\infty}, F f \otimes u=f \otimes u
$$

for all $f \in h_{0}, u \in k$. Then $I(h)$ is a subalgebra of $B(h)$ and the correspondence $\mathrm{L} \rightarrow \mathrm{L}^{\mathrm{b}}$ is an involution under which $I(h)$ is closed. To any $L \in I(h)$ we associate the family $\left\{L_{j}^{i} \mid i, j \in \tilde{S}\right\}$ of operators in h_{o} by putting

$$
\begin{equation*}
\left\langle f, L_{j}^{i} g\right\rangle=\left\langle f \otimes e_{i}, L g \otimes e_{j}\right\rangle, i, j \in \tilde{S}, f, g \in h_{0} . \tag{2.5}
\end{equation*}
$$

Then by (2.3)

$$
\begin{aligned}
& L_{j}^{\infty}=L_{-\infty}^{i}=0 \text { for all } i, j \in \tilde{S}, \\
& \sum_{i \in \tilde{S}}\left\|L_{j}^{i} f\right\|^{2}=\left\|L f \otimes e_{j}\right\|^{2}, f \in h_{0} .
\end{aligned}
$$

Hence by the basic results of quantum stochastic calculus (q.s.c.) there exists a unique adapted process Λ_{L} in \tilde{H} satisfying

$$
\begin{equation*}
\Lambda_{L}(0)=0, d \Lambda_{L}=\sum_{i, j \in \tilde{S}} L_{j}^{i} d \Lambda_{i}^{j}, L \in I(h) . \tag{2.6}
\end{equation*}
$$

(See, for example, Proposition 27.1 in [4]). The following two propositions are immediate from the methods of q.s.c. (Ch. III, [4]).

Proposition 2.1. The processes $\left\{\Lambda_{L} \mid L \in I(h)\right\}$ defined by (2.6) satisfy the followinc
(i) $\left\langle f e(u), \Lambda_{L}(t) g e(v)\right\rangle=\int_{0}^{t}\left\langle f \otimes\left(e_{-\infty}+u(s)\right), \operatorname{Lg} \otimes\left(v(s)+e_{\infty}\right)\right\rangle d s\langle e(u), e(v)\rangle$,
(ii) If $\Lambda_{L}^{\dagger}(t)=\Lambda_{L b}(t)$ then $\left\{\Lambda_{L}, \Lambda_{L}^{\dagger}\right\}$, is an adjoint pair;
(iii) $d \Lambda_{L} d \Lambda_{M}=d \Lambda_{L M}$.

In particular, Λ_{L} is independent of the orthonormal basis $\left\{e_{i} \mid i \in S\right\}$ employed in its definition.

Proposition 2.2. Let $L \in I(h)$. Then there exists a unique unitary operator valued adapted process U_{L} satisfying the quantum stochastic differential equation (q.s.d.e.)

$$
U_{L}(0)=0, d U_{L}=\left(d \Lambda_{L}\right) U_{L}
$$

if and only if

$$
\begin{equation*}
L+L^{b}+L^{b} L=L+L^{b}+L L^{b}=0 \tag{2.7}
\end{equation*}
$$

If $h_{i,} i=1,2$ are Hilbert spaces and x is a bounded operator in h_{1} we adopt the convention of denoting by the same symbol X, the operator $X \otimes 1$ in $h_{1} \otimes h_{2}$ where 1 dnotes the identify operator in h_{2}. For any $L \in I(h)$ and $x \in B\left(h_{0}\right)$ the operators $X L$ and $L X$ belong to $I(h)$. Furthermore $X d \Lambda_{L}=d \Lambda_{X L}$, $\left(d \Lambda_{L}\right) X=d \Lambda_{L X}$.
proposition 2.3. Let $L \in I(h)$. Suppose (2.7) holds and U_{L} is the unitary operator valued process defined by Proposition 2.2. Then

$$
d U_{L}^{*} X U_{L}=U_{L}^{*} d \Lambda_{L} b_{X+X L+L}^{b} X_{L} U_{L} \text { for all } x \in B\left(h_{o}\right)
$$

If

$$
T_{t}(X)=I_{O} U_{L}^{*}(t) X U_{L}(t)
$$

where \mathbb{E}_{o} denotes the boson vacuum conditional expectation map from $B(\tilde{H})$ onto $B\left(h_{0}\right)$ then $\left\{T_{t} \mid t \geq 0\right\}$ is a uniformly continuous one parameter semigroup of operators on the Banach space $B\left(h_{0}\right)$ whose infinitesimal generator L is given by

$$
\begin{aligned}
& L(x)=\left.\frac{d T_{t}(x)}{d t}\right|_{t=0} \\
& \langle f, L(X) g\rangle=\left\langle f \otimes e_{-\infty^{\prime}}\left(L^{b} x+x L+L^{b} x L\right) g \otimes e_{\infty}\right\rangle \text { for all } f, g \in h_{0} .
\end{aligned}
$$

Proof: Propositions 1-3 are the basic results of q.s.c. and we refer to Chapter III, [4].
[]
3. Construction of some classical Markov flows through unitary evolutions :

Let G be a locally compact second countable group acting on a separable σ-finite measure space (X, F, μ) with G-invariant measure μ. (Obvious generalizations can be worked out when μ is only quasi invariant). Define $h_{o}=L^{2}(\mu)$ and $k=L^{2}(G)$ with respect to a left invariant Haar measure. Express any element $\underline{\mathrm{f}} \in h=h_{0} \mathscr{\delta}\left(\mathbb{C} \mathrm{e}_{-\infty} \oplus k \oplus \mathbb{C} \mathrm{e}_{\infty}\right)$ as a column vector

$$
\underline{f}=\left(\begin{array}{l}
f_{-}(x) \\
f_{o}(x, g) \\
f_{+}(x)
\end{array}\right) \quad x \in X \quad, g \in G .
$$

Let $\lambda(x, g)$ be any complex valued measurable function on $X \times G$ satisfying

$$
\begin{equation*}
\text { ess. } \sup _{\mu} \int_{G}|\lambda(x, g)|^{2} d g<\infty \tag{3.1}
\end{equation*}
$$

where dg indicates integration with respect to the left invariant Haar measure. Define the operator L_{λ} associated with λ in h by

$$
L_{\lambda} \underline{f}=\left(\begin{array}{l}
-\int_{G}\left\{\overline{\lambda(x, g)} f_{0}(x, g)+\frac{1}{2}|\lambda(x, g)|^{2} f_{+}(x)\right\} d g \\
f_{0}\left(g^{-1} x, g\right)-f_{0}(x, g)+\lambda\left(g^{-1} x, g\right) f_{+}\left(g^{-1} x\right) \\
0
\end{array}\right)
$$

Then (3.1) implies that $L_{\lambda} \in B(h)$. Furthermore the following holds:
(i) $L_{\lambda} \in(h)$;

$$
L_{\lambda}{ }_{\lambda} \underline{f}=\left(\begin{array}{l}
\int_{G}\left\{\overline{\lambda(x, g)} f_{0}(g x, g)-\frac{1}{2}|\lambda(x, g)|^{2} f_{+}(x)\right\} d g \\
f_{0}(g x, g)-f_{0}(x, g)-\lambda(x, g) f_{+}(x) \\
0
\end{array}\right) ;
$$

(iii) $L_{\lambda}^{b} L_{\lambda}+L_{\lambda}^{b}+L_{\lambda}=L_{\lambda} L_{\lambda}^{b}+L_{\lambda}+L_{\lambda}^{b}=0$.

Using Proposition 2.2 construct the unitary operator valued process $U_{\lambda}=U_{L_{\lambda}}$ in
\tilde{H} satisfying

$$
U_{\lambda}(0)=1, d U_{\lambda}=\left(d \Lambda_{L_{\lambda}}\right) U_{\lambda} .
$$

Consider the Evans-Hudson flow $\left\{j_{t} \mid t>0\right\}$ induced by U_{λ} :

$$
j_{t}(x)=U_{\lambda}(t)^{*} x U_{\lambda}(t), x \in B\left(h_{0}\right)
$$

If $\left\{e_{i} \mid i \in S\right\}$ is any fixed orthonormal basis in $L^{2}(G)$ then the structure maps $\left\{\theta_{j}^{i} \mid i, j \in \tilde{S}\right\}$ of the flow $\left\{j_{t}\right\}$ are given by

$$
\theta_{j}^{i}(x)=\left(L_{\lambda}^{b} x+X L_{\lambda}+L_{\lambda}^{b} X L_{\lambda}\right)_{j}^{i}
$$

with the convention $\theta_{j}^{\infty}=\theta_{-\infty}^{i}=0$. Denote by A_{o} the abelian von Neumann algebra $L^{\infty}(\mu)$ where any function $\phi \in L^{\infty}(\mu)$ is interpreted as the operator of multiplication by ϕ in $L^{2}(\mu)=h_{0}$ Then a routine computation yields the following: θ_{j}^{i} leaves A_{0} invariant and

$$
\begin{aligned}
& \theta_{j}^{i}(\phi)(x)=\int_{G} \phi(g x) \bar{e}_{i}(g) e_{j}(g) d g-\delta_{j}^{i} \phi(x), i, j \in S, \\
& \theta_{j}^{-\infty}(\phi)(x)=\int_{G} \overline{\lambda(x, g)}[\phi(g x)-\phi(x)] e_{j}(g) d g, j \in S, \\
& \theta_{\infty}^{i}(\phi)(x)=\int_{G} \lambda(x, g) \overline{e_{i}(g)}[\phi(g x)-\phi(x)] d g, i \in S, \\
& \theta_{\infty}^{-\infty}(\phi)(x)=\int_{G}|\lambda(x, g)|^{2}[\phi(g x),-\phi(x)] d g .
\end{aligned}
$$

It now follows from [2,3] (and also Section 27, 28 in [4]) that

$$
\left[j_{s}(\phi), j_{t}(\psi)\right]=0 \text { for all } s, t \geq 0, \quad \phi, \psi \in A_{0}
$$

In other words $\left\{\left.j_{t}\right|_{A_{0}}, t \geq 0\right\}$ is a classical Markov flow in the Accardi-FrigerioLewis' formalism with infinitesimal generator L given by

$$
L(\phi)(x)=\theta_{\infty}^{-\infty}(\phi)(x)=\int_{G}|\lambda(x, g)|^{2}[\phi(g x)-\phi(x)] d g
$$

Thus $\lambda(x, g)$ can be interpreted as the rate of change of amplitude density from the state x to the state gx .

When G and X are finite this result reduces to the description in $[1,3]$. If G and X are countable we obtain the picture of a Markov flow in [2].

References

[1] Meyer, P.A.: Chaines de Markov finies et representation chaotique, Strasbourg preprint (1989).
[2] Mohari, A., Sinha, K.B.: Quantum stochastic flows with infinite degrees oí freedom and countable state Markov processess, Sćnkhya, Ser. A, 52, 43-57 (1990).
[3] Parthasarathy,K.R., Sinha, K.B. Markov chains as Evans-Hudson diffusions in Fock space, Indian Statistical Institute preprint (1989) Delhi, (To appear in Seminaire Strasbourg).
[4] Parthasarathy, K.R. An Introduction to Quantum Stochastic Calculus, Indian Statistical Institute, Delhi (1990).

