SÉminaire de probabilités (Strasbourg)

Uwe KÜCHLER
 Kirsten Neumann
 An extension of Krein's inverse spectral theorem to strings with nonreflecting left boundaries

Séminaire de probabilités (Strasbourg), tome 25 (1991), p. 354-373
http://www.numdam.org/item?id=SPS_1991__25__354_0
© Springer-Verlag, Berlin Heidelberg New York, 1991, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

An extension of Krein's inverse spectral theorem to strings with nonreflecting left boundaries
by

Abstract

Uwe Küchler and Kirsten Neumann Humboldt-University at Berlin, Department of Mathematics 1086 Berlin, P.O.Box 1297, G.D.R.


```
Abstract: Krein's inverse spectral theorem describes the spectral measures \(\tau\) of the differential operators \(D_{m} D_{x}\) with boundary condition \(f_{-}^{\prime}(0)=0\), if \(m\) runs through all nondecreasing functions on \([0, \infty)\). This result will be extended to boundary conditions of the type \(a_{-}^{\prime}(0)-f(0)=0 \quad(a \in[0, \infty))\).
Other conditions as in Krein's theorem appear.
```

Key words: gap-diffusions, quasidiffusions, generalized second order differential operator, spectral measures, local times, Krein's inverse spectral theorem, Krein's correspondence

60J35, 60J60, 34B20

1. Introduction

It is well-known that every nondecreasing function m on $[0, \infty$) performed with appropriate boundary conditions at zero and at $1:=\sup \sup m$ (a so-called string) generates a strong Markov process $\left(X_{t}\right)$ on supp m, where supp m denotes the set of points where m increases. This process has as its (selfadjoint) infinitesimal generator in $L_{2}(m)$ the generalized second order differential operator $D_{m} D_{x}$ together with the mentioned boundary conditions. $\left(X_{t}\right)$ is called a quasi- (or gap-) diffusion with speed measure m. Examples are diffusions and birth- and death-processes. Several probabilistic quantities of $\left(X_{t}\right)$ as e.g. transition densities, first hitting time densities, Lévy-measures of the inverse local time at zero, can be expressed in terms of spectral measures $\tau^{(m)}$ of $D_{m} D_{x}$ under different boundary conditions, see e.g. Ito, McKean [2], Küchler [7], [8], Küchler, Salminen [9].

An essential result concerning these spectral measures is M.G. Krein's inverse spectral theorem, in a more extended form known as Krein's correspondence theorem, see Kac, Krein [3], Kotani, Watanabe [6]. Roughly speaking it states that the mapping $m \longrightarrow \tau^{(m)}$ is a one-toone and onto correspondence between the strings m with the "reflecting" boundary condition $f^{-}(0):=f^{\prime}\left(0^{-}\right)=0$ and the set of all measures τ on $[0, \infty)$ that integrate $(1+\mu)^{-1}$ thereon, see Theorem 2.2 below. What we are going to do is to study the situation for the boundary conditions

$$
a f^{-}(0)-f(0)=0
$$

where $a \in[0, \infty)$ is fixed. (The case above corresponds to $a=\infty$.) If $a \in(0, \infty)$ ("elastic killing boundary"), then there is still a one-to-one and into correspondence (Theorem 2.4). If $a=0$, then $m \rightarrow \tau^{(m)}$ maps the strings m with the "killing" boundary condition $f(0)=0$ onto the set of measures on ($0, \infty$) that integrate $[\mu(1+\mu)]^{-1}$, but not one-to-one. In Theorem 3.2 we shall describe the preimages for every τ which form one-parametric families. As an application we get the description of all measures ν that can appear as the Lévy-measure of the inverse local times at zero for quasidiffusions (see Remark 3.6). This result was proved by other (probabilistic) means in Knight [5]. Here we shall present an analytical approach.
Moreover, a generalization of Lemma 1 of Karlin, McGregors paper [4] concerning birth- and death-processes to strings is given (see Corollary 3.7).

2. Strings, spectral measures and Krein's theorem

Here we shall summarize some facts from the theory of generalized second order differential operators $D_{m} D_{x}$. For details the reader is referred to Kac, Krein [3] or Dym, McKean [1], the latter uses another terminology.
By R and K we denote the real axis and the complex plane, respectively. R_{+}stands for $[0, \infty), K_{-}$for $K \backslash R_{+}$. Put $\bar{R}_{+}:=[0, \infty]$ and $\frac{1}{\delta}:=\infty, \frac{1}{\infty}:=0$. Let m be a nondecreasing right-continuous extended real-valued function on R with $m(x) \equiv 0, x<0$. Define E_{m} to be the set of points where m increases and is finite:

$$
E_{m}:=\left\{x \in R_{+} \mid \exists \varepsilon_{0}>0: m(x-\varepsilon)<m(x+\varepsilon)<\infty \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right)\right\} .
$$

We shall assume $E_{m} \neq \varnothing$ and denote by the same letter m the measure generated by the function m. Such a measure m is called a speed measure.
Introduce c, l and r by

$$
\begin{aligned}
c & :=\inf E_{m}=\inf \{x \geqslant 0 \mid m(x)>0\} \\
1 & :=\sup E_{m} \leq \infty, \\
r & :=\sup \{x \geqslant 0 \mid m(x)<\infty\} \leqslant \infty .
\end{aligned}
$$

We have $0 \leqslant c \leqslant 1 \leqslant r$ and put $h:=r-1$ if $l<\infty$. Otherwise h is irrelevant and for convenience we put $h=0$ in this case. Note that $h=0$ if $1<\infty$ and $m(1)=\infty$. If $1+m(1)<\infty$ and $m(\{1\})>0$, then h must be greater than zero. The number $r=1+h$ is called the length of the string.
Sometimes we shall write c_{m}, I_{m}, \ldots to express that these numbers come from m.
By ϑ we denote the set of all real functions f on R having a representation

$$
\begin{equation*}
f(x)=\bar{a}+\bar{b} \cdot x+\int_{0}^{x}(x-s) g(s) m(d s) \tag{2.1}
\end{equation*}
$$

for some measurable g on R and some reals \bar{a}, \bar{b}.
Note that every $f \in \vartheta$ is continuous and linear on the open intervals of $R \backslash E_{m}$.
On ϑ we define a generalized second order differential operator $D_{m} D_{x}$ by $D_{m} D_{x}=g$, details can also be found in Küchler [7], [8]. For every fixed $a \in[0, \infty]$ the restriction A_{a} of $D_{m} D_{x}$ to

$$
\begin{equation*}
\Delta_{a}:=\left\{f \in \mathscr{\vartheta} \cap L_{2}(m) \mid D_{m} D_{x} f \in L_{2}(m), a f^{-}(0)-f(0)=0\right\} \tag{2.2}
\end{equation*}
$$

(for $a=\infty$ we mean $f^{-}(0)=0$) is a nonnegative selfadjoint operator in $L_{2}(m)$.
(By f^{+}and f^{-}we denote the right- and left-hand-side derivative of f, respectively.)
Note that $f \in \mathcal{V} \cap L_{2}(m)$ implies $f(r)=0$ if $r=1+h<\infty$. Because of the linearity of f on the intervals of $R \backslash E_{m}$ this can be written as a boundary condition $\mathrm{hf}^{+}(1)+f(1)=0$ with $f^{+}(1)=0$ if $h=\infty$. Otherwise, the boundary condition appearing in (2.2) can also be included in $f \in \mathscr{\vartheta} \cap L_{2}(m)$ if we change m to the left of - a into $m(x)=-\infty, x<-a$.

In the following, m will be understood in this way.
This change of m charges $-a$ with infinite mass. The original
measure m on R_{+}remains unchanged by this procedure if a>0. In case $a=0$, the value of $m(\{0\})$ is not reconstructable. But this does not disturb the corresponding spectral theory, as we will see below. Thus we suppose $m(0)=0$ if we consider $a=0$. Now m has infinite mass at $-a$ (and r if $r<\infty$) and thus $f \in \mathcal{V} \cap L_{2}(m)$ implies also $f(-a)=0$, i.e. $\quad a f^{-}(0)-f(0)=0$.
Therefore, the selfadjoint operators A_{a} are characterized by the (changed) function m, or by (m, a). We call the pair (m, a) a string and denote it by $S_{a}(m)$. If the length $r=l+h$ is infinite, then we say that the string $S_{a}(m)$ is infinite. Depending on $1+m(1-)<\infty$ or $=\infty$ the string $S_{a}(m)$ is called regular or singular. The resolvent operator $R_{\lambda, a}:=\left(A_{a}-\lambda I\right)^{-1}$ exists for $\lambda \in(-\infty, 0)$, and it can be shown analogously to Dym, McKean [1] that $R_{\lambda, a}$ is given by

$$
\left(R_{\lambda, a} f\right)(x)=\int_{0}^{1} r_{\lambda, a}(x, y) f(y) m(d y), \quad f \in L_{2}(m)
$$

where

$$
r_{\lambda, a}(x, y):=\frac{\Phi_{a}^{\uparrow}(x \wedge y, \lambda) \Phi^{\downarrow}(x \vee y, \lambda)}{w}
$$

Here Φ_{a}^{\uparrow} and Φ^{\downarrow} denote the solutions $f \in \mathscr{V}$ of

$$
D_{m} D_{x} f+\lambda f=0
$$

satisfying the boundary conditions

$$
\begin{align*}
& \Phi_{a}^{\uparrow}(0, \lambda)=1, \quad a \in(0, \infty] ; \quad \Phi_{0}^{\uparrow-}(0, \lambda)=1 \tag{2.3}\\
& a \Phi_{a}^{\uparrow-}(0, \lambda)-\Phi_{a}^{\uparrow}(0, \lambda)=0, \quad a \in[0, \infty) ; \quad \Phi_{\infty}^{\uparrow-}(0, \lambda)=0, \tag{2.4}
\end{align*}
$$

and

$$
\begin{align*}
& \Phi^{\downarrow-}(0, \lambda)=-1 \tag{2.5}\\
& h \Phi^{\downarrow+}(1, \lambda)+\Phi^{\downarrow}(1, \lambda)=0 \tag{2.6}
\end{align*}
$$

Note that $\Phi_{a}^{\uparrow}(\cdot, \lambda)$ is increasing and $\Phi^{\downarrow}(\cdot, \lambda)$ is decreasing for fixed $\lambda<0$.
w denotes the Wronskian:

$$
w=w(\lambda):=\Phi_{\mathrm{a}}^{\uparrow-} \Phi^{\downarrow}-\Phi_{\mathrm{a}}^{\uparrow} \Phi^{\downarrow-}
$$

Several times we will use that $\Phi_{a}^{\uparrow}(\cdot, \lambda)$ is the uniquely determined solution of

$$
\begin{equation*}
\Phi(x, \lambda)=1+\frac{x}{a}-\lambda \int_{0}^{x}(x-s) \Phi(s, \lambda) m(d s), \quad x \in[0, r) \tag{2.7}
\end{equation*}
$$

for $a \in(0, \infty]$, and of

$$
\begin{equation*}
\Phi(x, \lambda)=x-\lambda \int_{0}^{x}(x-s) \Phi(s, \lambda) m(d s), \quad x \in[0, r) \tag{2.8}
\end{equation*}
$$

for $a=0$.
Similarly, $\Phi^{\downarrow}(\cdot, \lambda)$ is the unique solution of

$$
\begin{equation*}
\Phi(x, \lambda)=\Phi(0, \lambda)-x-\lambda \int_{0}^{x}(x-s) \Phi(s, \lambda) m(d s), \quad x \in[0, r) . \tag{2.9}
\end{equation*}
$$

DEFINITION 2.1: Assume $S_{a}(m)$ is a string with $a \in[0, \infty]$. Then a measure τ on $[0, \infty)$ is called a spectral measure of $S_{a}(m)$, if

$$
r_{\lambda, a}(x, y)=\int_{0}^{\infty} \frac{\Phi_{a}^{\uparrow}(x, \mu) \Phi_{a}^{\uparrow}(y, \mu)}{\mu-\lambda} d \tau(\mu), \lambda<0 ; x, y \in E_{m} .
$$

The set $\operatorname{supp} \tau$ is called the spectrum of $S_{a}(m)$.
As for the case of $a=\infty$, treated in Kac, Krein [3] and Dym, McKean [1], one can show that for every string $S_{a}(m)$ a unique spectral measure τ exists (on ($0, \infty$) if $a \neq 0$). It will often be denoted by $\tau_{a}^{(m)}$. (We shall identify measures τ on R_{+}and their generating function $\mu \longrightarrow \tau([0, \mu])$.)
Note that $\Phi_{0}^{\uparrow}(\cdot, \lambda)$, and therefore $\tau_{0}^{(m)}$ does not depend on the mass of m at zero. Thus, considering a string $S_{0}(m)$ we shall always suppose that $m(0)=0$.
If the string $S_{a}(m)$ is regular, then $\tau_{a}^{(m)}$ is given by

$$
\begin{equation*}
\tau_{a}^{(m)}(\mu)=\sum_{k=0}^{\infty} \tau_{a}^{(m)}\left(\left\{\mu_{k}\right\}\right) \cdot \mathbb{1}_{\left[0, \mu_{k}\right]}(\mu) \tag{2.10}
\end{equation*}
$$

where $\left(\mu_{k}\right)_{k \geqslant 0}$ denotes the sequence of solutions of

$$
h \Phi_{a}^{\uparrow,+}(1, \mu)+\Phi_{a}^{\uparrow}(1, \mu)=0
$$

and

$$
\tau_{a}^{(m)}\left(\left\{\mu_{k}\right\}\right)=\left[\int_{0}^{1}\left[\Phi_{a}^{\uparrow}\left(x, \mu_{k}\right)\right]^{2} d m\right]^{-1} .
$$

We have

$$
0 \leqslant \mu_{0}<\mu_{1}<\ldots<\mu_{n}<\ldots \quad \text { and } \quad \sum_{n \geqslant 1} \mu_{n}^{-1}<\infty
$$

The following theorem answers the question which measures may appear as spectral measures for strings $S_{\infty}(m)$. Its second part is M.G. Krein's inverse spectral theorem, (i) and (ii) together are known as Krein's correspondence (Kotani, Watanabe [6]).

THEOREM 2.2:

(i) For every string $S_{\infty}(m)$ its spectral measure $\tau=\tau_{\infty}^{(m)}$ satisfies

$$
\begin{equation*}
\int_{0-}^{\infty} \frac{d \tau(\mu)}{1+\mu}<\infty \tag{2.11}
\end{equation*}
$$

(ii) For every measure τ on R_{+}with $\tau\left(R_{+}\right)>0$ and (2.11) there exists one and only one string $S_{\infty}(m)$ with $c_{m}=0$ having τ as its spectral measure.

Note that the condition $c_{m}=0$ in (ii) ensures the unicity of m. Indeed, all "shifted" strings $S_{\infty}(m(\cdot-c)) ~(c>0) ~ h a v e ~ t h e ~ s a m e ~$ spectral measure, compare Proposition 2.3 below.
For every string $S_{\infty}(m)$ its characteristic function $\Gamma_{m}(\cdot)$ is given by (see Chapter 4 below)

$$
\begin{equation*}
\Gamma_{m}(\lambda):=c_{m}+\int_{0-}^{\infty} \frac{d \tau_{\infty}^{(m)}(\mu)}{\mu-\lambda}=\lim _{x \uparrow r} \frac{\Phi_{0}^{\uparrow}(x, \lambda)}{\Phi_{\infty}^{\uparrow}(x, \lambda)}, \quad \lambda \in K_{-} . \tag{2.12}
\end{equation*}
$$

Because of the definition of the spectral measure we obtain

$$
\begin{equation*}
\Phi^{\downarrow}(0, \lambda)=r_{\lambda, \infty}(0,0)=\Gamma_{m}(\lambda), \quad \lambda<0 \tag{2.13}
\end{equation*}
$$

Letting $\lambda \uparrow 0$ in (2.12) we get the formula

$$
\begin{equation*}
c_{m}+\int_{0-}^{\infty} \frac{d \tau_{\infty}^{(m)}(\mu)}{\mu}=r=1+h \tag{2.14}
\end{equation*}
$$

with the understanding that $h=0$ if $1+m(1-)=\infty$.
Krein's theorem says that $\Gamma_{m}(\cdot)$ determines $S_{\infty}(m)$ uniquely. In Chapter 4 below we shall see that it holds

$$
\begin{equation*}
-\frac{1}{\Gamma_{m}(\lambda)}=\lambda m(\{0\})-r_{m}^{-1}-\int_{0}^{\infty}\left(\frac{1}{\mu}-\frac{1}{\mu-\lambda}\right) \tau_{0}^{(m)}(d \mu), \quad \lambda \in K_{-} \tag{2.15}
\end{equation*}
$$

For every string $S_{\infty}(m)$ with $c_{m}=0$ we have

$$
\begin{equation*}
\tau_{\infty}^{(m)}\left(R_{+}\right)=[m(\{0\})]^{-1} \tag{2.16}
\end{equation*}
$$

Indeed, consider $\lambda \Gamma_{m}(\lambda)$ for $\lambda \downarrow-\infty$ and compare (2.12) and (2.15), then (2.16) is obvious.

Finally, note that $\tau_{\infty}^{(m)}(\{0\})>0 \quad$ if and only if the constant function $\Phi_{\infty}^{\uparrow}(\cdot, 0) \equiv 1$ is an eigenfunction of $D_{m} D_{x}$. This holds if and only if $r=1+h=\infty$ (or $1=\infty$) and $m(1-)<\infty$. Moreover, in this case we have

$$
\begin{equation*}
\tau_{\infty}^{(m)}(\{0\})=[m(1)]^{-1} \tag{2.17}
\end{equation*}
$$

The next proposition shows how the spectral measure changes if m suffers certain transformations.

PROPOSITION 2.3: Let $S_{a}(m)$ be a string with $a \in[0, \infty]$ and assume $u, v \in(0, \infty), w \in\left[0, \frac{a}{u}\right]$ and $w<\infty$. Define

$$
\begin{aligned}
& \tilde{m}(x):=v \cdot m(u(x-w)), \\
& \tilde{a}:=\frac{a}{u}-w
\end{aligned}
$$

Then, for the spectral measures $\tilde{\tau}_{\widetilde{a}}:=\tau_{\widetilde{a}}^{(\tilde{m})}$ and $\tau_{a}:=\tau_{a}^{(m)}$ of $S_{\tilde{a}}(\tilde{m})$ and $S_{a}(m)$, respectively, we have
(i) If $a=\infty$, then for all $w \in[0, \infty)$ we have $\tilde{a}=\infty$ and

$$
\tilde{\tau}_{\infty}(\mu)=v^{-1} \tau_{\infty}\left(\frac{v}{\mathbf{u}} \cdot \mu\right), \quad \mu \geqslant 0
$$

(ii) If $a \in(0, \infty), 0<w<\frac{a}{u}$, then $\tilde{a} \in(0, \infty)$ and

$$
\tilde{\tau}_{\tilde{a}}(\mu)=v^{-1}\left(1-\frac{u w}{a}\right)^{2} \tau_{a}\left(\frac{v}{u} \cdot \mu\right), \quad \mu \geqslant 0
$$

(iii) If $a \in(0, \infty), w=\frac{a}{u}$, then $\tilde{a}=0$ and

$$
\tilde{\tau}_{0}(\mu)=v^{-1}\left(\frac{u}{a}\right)^{2} \tau_{a}\left(\frac{v}{u} \cdot \mu\right), \quad \mu \geqslant 0
$$

(iv) If $a=w=0$, then

$$
\tilde{\tau}_{0}(\mu)=v^{-1} \cdot u^{2} \tau_{0}\left(\frac{v}{u} \cdot \mu\right), \quad \mu \geqslant 0
$$

To prove this proposition one calculates the relevant $\tilde{\Phi} \underset{\tilde{a}}{\hat{a}}$ and $\tilde{\Phi} \downarrow$ in terms of Φ_{a}^{\uparrow} and Φ^{\downarrow}, respectively, using (2.7-2.9). This gives the relation between the resolvent kernels $\tilde{r}_{\tilde{\lambda}, \tilde{a}}$ and $r_{\lambda, a}$. Definition 2.1 leads to the assertion of Proposition 2.3.

3. Results

In this chapter we shall formulate correspondence theorems for strings $S_{a}(m)$ with a $\neq \infty$ which extend Krein's result. The proofs can be found in Chapter 4.
We shall start with the case of $a=0$. For this purpose we still need a preparation.
Denote by Σ the set of all strings $S_{o}(m)$ with $m(0)=0$. We introduce a relation \sim in \sum by defining $S_{0}(m) \sim S_{0}(n)$ if there exists a real number $t \geqslant-\frac{1}{r_{n}}$ such that the transformation

$$
x \longrightarrow T_{t} x:=\frac{x}{1-t x}, \quad x \in R
$$

maps $\left(0, r_{m}\right)$ onto $\left(0, r_{n}\right)$ and such that

$$
\begin{equation*}
m(x)=\int_{0+}^{x}(1-t s)^{-2} d n\left(T_{t} s\right), \quad x \in\left(0, r_{m}\right) \tag{3.1}
\end{equation*}
$$

(indeed, $t=\frac{1}{r_{m}}-\frac{1}{r_{n}}$.) It is easy to see that \sim forms an equivalence relation ${ }^{m} \sum^{n}$. Put $\sum^{\hat{n}}:=\sum_{n} / \sim$ and for every string $s_{0}(m) \in \Sigma$ denote by $\hat{S}(m)$ the element of $\hat{\Sigma}$ generated by $S_{o}(m)$. For every string $S_{0}(m)$ and every $t \geqslant-\frac{1}{r_{m}}$ we define a new string $S_{o}\left(m_{t}\right)$ by $r_{m}:=\frac{r_{m}}{1+t r_{m}}$ and

$$
\left.\begin{array}{ll}
m_{t}(x):=\int_{0+}^{x}(1-t s)^{-2} d m\left(T_{t} s\right), & x \in\left(0, r_{m_{t}}\right) \tag{3.2}\\
m_{t}(x):=\infty, & x \geqslant r_{m_{t}}
\end{array}\right\}
$$

Obviously, we have

$$
\begin{equation*}
c_{m_{t}}=\frac{c_{m}}{1+t c_{m}}, \quad l_{m_{t}}=\frac{l_{m}}{1+t l_{m}}, \quad t \geqslant-\frac{1}{r_{m}} \tag{3.3}
\end{equation*}
$$

and $s_{0}\left(m_{t}\right) \sim s_{0}(m)$ for every $t \geqslant-\frac{1}{r_{m}}$
Otherwise, if $S_{0}(n) \sim S_{0}(m)$, then, by definition, there exists a real number $t \geqslant-\frac{1}{r_{n}}$ such that $m=n_{t}$. Observe $r_{m_{t}}=\infty \quad$ if and only if $\quad t=-\frac{1}{r_{m}}$.
Thus we have proved the following

LEMMA 3.1:

(i) For every string $S_{0}(m)$ its equivalence class $\hat{S}(m)$ is equal to $\left\{S_{0}\left(m_{t}\right) \left\lvert\, t \geqslant-\frac{1}{r_{m}}\right.\right\}$.
(ii) Every equivalence class $\hat{s} \in \hat{\Sigma}$ contains one and only one infinite string $S_{0}(m)$.

Now we are ready to formulate the analogue of Krein's correspondence for strings $S_{o}(m)$.

THEOREM 3.2:
(i) For every string $S_{0}(m)$ its spectral measure $\tau=\tau_{0}^{(m)}$ is supported by $(0, \infty)$ and has the property

$$
\begin{equation*}
\int_{0+}^{\infty} \frac{d \tau(\mu)}{\mu(1+\mu)}<\infty \tag{3.4}
\end{equation*}
$$

Moreover, it holds

$$
\begin{equation*}
\int_{0+}^{\infty} \frac{d \tau(\mu)}{\mu}=c_{m}^{-1}-r_{m}^{-1} \tag{3.5}
\end{equation*}
$$

(ii) If two strings $S_{0}(m)$ and $S_{0}(n)$ are equivalent (with respect to $\sim)$, then $\tau_{0}^{(m)}=\tau_{0}^{(n)}$.
(iii) For every measure τ on ($0, \infty$) $(\tau((0, \infty))>0)$ with (3.4) and every $r \in(0, \infty]$ there exists one and only one string $S_{0}(m)$ with length $r=r_{m}$ having τ as its spectral measure. If $S_{0}(m)$ and $S_{0}\left(m^{\prime}\right)$ are strings with the lengths r and r^{\prime}, respectively, having the same spectral measure, then $S_{0}\left(m^{\prime}\right)=S_{o}\left(m_{t}\right)$ holds with $t=\frac{1}{r^{\prime}}-\frac{1}{r}$. $\left(m_{t}\right.$ was defined in (3.2).)

This theorem can be reformulated in a shorter way as follows.

COROLLARY 3.3: There is a one-to-one and onto correspondence between the set $\hat{\Sigma}$ of equivalence classes \hat{S} of strings $S_{0}(m)$ and the set of measures τ on ($0, \infty$) satisfying (3.4), where τ is the spectral measure $\tau_{0}^{(m)}$ of every string $S_{0}(m)$ from \hat{S}.

Now let us turn to the case of $a \in(0, \infty)$.

THEOREM 3.4: Assume $a \in(0, \infty)$. Then it holds:
(i) For every string $S_{a}(m)$ with $c_{m}=0$ and $m(0) \geqslant 0$ its spectral measure $\tau=\tau_{a}^{(m)}$ is supported on $(0, \infty)$ and has the property

$$
\begin{equation*}
\int_{0+}^{\infty} \frac{d \tau(\mu)}{\mu}=\left(\frac{1}{r_{m}}+\frac{1}{a}\right)^{-1}<\infty \tag{3.6}
\end{equation*}
$$

(ii) If τ is a measure on ($0, \infty$) with nonzero mass, then there exists a string $S_{a}(m)$ with $c_{m}=0$ having τ as its spectral measure if and only if

$$
\begin{equation*}
\rho(\tau):=\int_{0+}^{\infty} \frac{d \tau(\mu)}{\mu} \leqslant a \tag{3.7}
\end{equation*}
$$

In this case, $S_{a}(m)$ is uniquely determined.
Moreover, if $S_{a}(m)$ and $S_{a} .^{\left(m^{\prime}\right)}$ with $a, a^{\prime} \in(0, \infty)$, $c_{m}=c_{m}=0$, have the same spectral measure, then

$$
m^{\prime}\left(x-a^{\prime}\right)=m_{t}(x-a), \quad x \in R_{+}
$$

with $t:=\frac{1}{a^{T}}-\frac{1}{a}$, where m_{t} was defined in (3.2).

Consider a speed measure m on $[0, \infty)$ with $c_{m}=0$; $m(0) \geqslant 0$ and form strings $S_{\infty}(m), S_{a}(m)$ and $S_{0}(m)$ for some $a \in(0, \infty)$. (Note that $m(\{0\})$ disappears if we construct $S_{0}(m)$.) Then we have

PROPOSITION 3.5: Between the spectral measures τ_{∞}, τ_{a} and τ_{0} of $S_{\infty}(m), S_{a}(m)$ with $a \in(0, \infty)$ and $S_{0}(m)$, respectively, the following equation holds:

$$
\begin{align*}
& {\left[\lambda m(0)-r_{m}^{-1}-\int_{0+}^{\infty}\left(\frac{1}{\mu}-\frac{1}{\mu-\lambda}\right) d \tau_{0}(\mu)\right]} \\
& \quad\left[\int_{0+}^{\infty} \frac{d \tau_{a}(\mu)}{\mu-\lambda}\right] \cdot\left[a+\int_{0-}^{\infty} \frac{d \tau_{\infty}(\mu)}{\mu-\lambda}\right]=-a, \quad \lambda \in K_{-} . \tag{3.8}
\end{align*}
$$

This generalizes a formula which was used by Knight [5], p. 60. Consider a string $S_{\infty}(m)$ and add to m some point mass $m_{0}>0$ at zero if necessary, i.e. if $c_{m}>0$. As we know, this does not touch the spectral measure $\tau_{0}^{(m)}$ of $S_{0}(m)$. Now, let $\quad l(t, 0), t \geqslant 0$, be the local time at zero of the quasidiffusion generated by $S_{\infty}(m)$. Since $0 \in E_{m}$, this notion makes sense. Then $\left(1^{-1}(t, 0), t \geqslant 0\right)$ is an increasing process with independent stationary increments and it holds

$$
E_{0} \exp \left(\lambda 1^{-1}(t, 0)\right)=\exp \left(-\frac{t}{\Gamma_{m}(\lambda)}\right), \quad \lambda<0, t \geqslant 0 .
$$

(See e.g. Knight [5] or Küchler [8].)
For $\lambda<0$, (2.15) implies

$$
-\frac{1}{\Gamma_{m}(\lambda)}=\lambda m(\{0\})-\frac{1}{r_{m}}-\int_{0}^{\infty}\left(1-e^{\lambda y}\right)\left[\int_{0+}^{\infty} e^{-\mu y^{\prime}} \tau_{0}^{(m)}(d \mu)\right] d y .
$$

Thus, by Theorem 3.2(ii) and Lemma 3.1.(i) the Lévy-measure n of $1^{-1}(., 0)$, given by

$$
\begin{equation*}
\operatorname{dn}(y):=\int_{0+}^{\infty} e^{-\mu y_{\tau_{0}}^{(m)}}(d \mu) d y, \quad y \in R_{+}^{\prime} \tag{3.9}
\end{equation*}
$$

is the same for all $s_{\infty}\left(m_{t}\right), t \geqslant-\frac{1}{r_{m}}$.
This means that the inverse local times at zero of the quasidiffusions corresponding to $S_{\infty}\left(m_{t}\right)$ differ in their killing rate $k=\frac{1}{r_{m}}+t \quad$ only.
Now Theorem 3.2 implies

COROLLARY 3.6: For every nontrivial measure τ on ($0, \infty$) with (3.4), every $m(\{0\})>0$ and every constant $k \geqslant 0$ there exists a quasidiffusion with speed measure m, a reflecting boundary at zero and length $\frac{1}{k}$ of the string $S_{\infty}(m)$ such that $1^{-1}(\cdot, 0)$ has the Lévy-measure (3.9).

This result was proved by other means in Knight [5].
As an example consider a birth- and death-process on the set of nonnegative integers with the intensities $\mu_{0} \geqslant 0, \lambda_{i}>0, \mu_{i+1}>0$, $i \geqslant 0$. Then

$$
\begin{aligned}
m(x) & :=\sum_{i=0}^{\infty} m_{i} \cdot \mathbb{1}_{[0, x]}\left(x_{i}\right) \\
\text { with } \quad x_{0} & :=0, \quad x_{i}:=\sum_{j=0}^{j-1} \frac{1}{\lambda_{j} m_{j}}, \\
m_{0} & :=1, \quad m_{i}:=\prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_{j}} \quad, \quad i \geqslant 1
\end{aligned}
$$

and $a:=\mu_{0}^{-1}, h \geqslant 0$ define a string $S_{a}(m)$. (Necessarily, $h=0$ if m is singular.) We have

$$
\begin{aligned}
& D_{m} D^{f} f\left(x_{i}\right)=\left[\frac{\Delta f\left(x_{i}\right)}{\Delta x_{i}}-\frac{\Delta f\left(x_{i-1}\right)}{\Delta x_{i-1}}\right] \cdot m_{i}^{-1}= \\
& \quad=\lambda_{i} f\left(x_{i+1}\right)-\left(\lambda_{i}+\mu_{i}\right) f\left(x_{i}\right)+\mu_{i} f\left(x_{i-1}\right), \quad i \geqslant 1
\end{aligned}
$$

with $\Delta u\left(x_{j}\right):=u\left(x_{j+1}\right)-u\left(x_{j}\right)$.
Moreover,

$$
D_{m} D_{x} f\left(x_{0}\right)=\frac{\frac{\Delta f\left(x_{0}\right)}{x_{1}}-f^{-}\left(x_{0}\right)}{m_{0}} \quad \text { and }
$$

the boundary condition

$$
a f^{-}\left(x_{0}\right)-f\left(x_{0}\right)=0
$$

is equivalent to

$$
D_{m} D_{x} f\left(x_{0}\right)=-\left(\lambda_{0}+\mu_{0}\right) f\left(x_{0}\right)+\lambda_{0} f\left(x_{1}\right)
$$

Thus, we have

$$
\Phi_{a}^{\uparrow}\left(x_{i}, \lambda\right)=Q_{i}(\lambda), \quad i \geqslant 0, \lambda \in R
$$

in the terminology of Karlin, McGregor [4].
The spectral measure $\tau_{a}^{(m)}$ of $S_{a}(m)$ is a solution of the stieltjes moment problem connected with the Jacobi-matrix (a_{ij}) with

$$
a_{i j}:=\lambda_{i} \mathbb{1}_{1}(j-i)+\mu_{i} \mathbb{1}_{1}(i-j)-\left(\lambda_{i}+\mu_{i}\right) \mathbb{1}_{0}(i-j) \quad(i, j \geqslant 0)
$$

Indeed, for $\lambda \rightarrow-\infty$ we have

$$
\left\|-\lambda R_{\lambda, a} f-f\right\|_{L_{2}(m)} \longrightarrow 0, \quad f \in L_{2}(m)
$$

Consequently,

$$
\left\langle-\lambda R_{\lambda, a} f, g\right\rangle_{L_{2}(m)} \longrightarrow\langle f, g\rangle_{L_{2}(m)}, \quad f, g \in L_{2}(m) .
$$

Choosing $f=\mathbb{1}_{\left\{x_{i}\right\}}, g=\mathbb{1}_{\left\{x_{j}\right\}}$ we obtain

$$
\begin{aligned}
& \lim _{\lambda \rightarrow-\infty}-\lambda r_{\lambda, a}\left(x_{i}, x_{j}\right)= \\
& \quad \int_{0}^{\infty} \Phi_{a}^{\uparrow}\left(x_{i}, \mu\right) \Phi_{a}^{\uparrow}\left(x_{j}, \mu\right) d \tau_{a}^{(m)}(\mu)=\frac{\delta_{i j}}{m_{i}}, \quad i, j \geqslant 0 .
\end{aligned}
$$

Compare this equation with Theorem 1 of Karlin, McGregor [4], p. 494 to get the assertion.

Now, Lemma 1 of Karlin, McGregor [4] can be generalized to strings as follows.

COROLLARY 3.7: Given a string $S_{\infty}(m)$ with $c_{m}=0$ and with the spectral measure τ and assume $a>0$. Then there exists a string $S_{a}\left(m^{\prime}\right)$ with $c_{m^{\prime}}=0$ having the same spectral measure $\tau \quad$ if and only if

$$
\begin{equation*}
r_{m}=1_{m}+h_{m} \leq a \tag{3.10}
\end{equation*}
$$

Proof: If $\tau(\{0\})>0$, then there does not exist such a string $S_{a}\left({ }^{\prime}{ }^{\prime}\right)$ because, for $a \neq \infty$, the spectral measure is concentrated on ($0, \infty$). Otherwise, $r_{m}=\infty$, see the remarks before (2.17).
Assume $\tau(\{0\})=0$. From (2.14) we know $r_{m}=\int_{0}^{\infty} \frac{d \tau(\mu)}{\mu}$. Now apply
Theorem $3.4(i i)$.

4. Proofs

At first we shall collect some results of the spectral theory of $D_{m} D_{x}$. For details see e.g. Kac, Krein [3]. Let us given a string $S_{\infty}(m)$. The characteristic function $\Gamma(\cdot)$ of $S_{\infty}(m)$ is given by the limit (see (2.12))

$$
\begin{equation*}
\Gamma(\lambda)=\lim _{x \uparrow r} \frac{\Phi_{0}^{\uparrow}(x, \lambda)}{\Phi_{\infty}^{\uparrow}(x, \lambda)}, \quad \lambda \in K_{-} . \tag{4.1}
\end{equation*}
$$

In the regular case we have for $h<\infty$

$$
\begin{equation*}
\Gamma(\lambda)=\frac{\Phi_{0}^{\uparrow}(r, \lambda)}{\Phi_{\infty}^{\uparrow}(r, \lambda)}=\frac{\Phi_{0}^{\uparrow,+}(1, \lambda) \cdot h+\Phi_{0}^{\uparrow}(1, \lambda)}{\Phi_{\infty}^{\uparrow,+}(1, \lambda) \cdot h+\Phi_{\infty}^{\uparrow}(1, \lambda)} \tag{4.2}
\end{equation*}
$$

and for $h=\infty$ it holds

$$
\begin{equation*}
\Gamma(\lambda)=\frac{\Phi_{0}^{\uparrow,+}(1, \lambda)}{\Phi_{\infty}^{1,+}(1, \lambda)} . \tag{4.3}
\end{equation*}
$$

If $S_{\infty}(m)$ is singular, then besides of (4.1) it holds

$$
\Gamma(\lambda)=\lim _{x \uparrow r} \frac{\Phi_{0}^{\uparrow,+}(x, \lambda)}{\Phi_{\infty}^{1,+}(x, \lambda)}, \quad \lambda \in K_{-} . \quad \text { (4.4) }
$$

Moreover, we have the representation (see (2.12))

$$
\begin{equation*}
\Gamma(\lambda)=c_{m}+\int_{0-}^{\infty} \frac{d \tau_{\infty}^{(m)}(\mu)}{\mu-\lambda}, \quad \lambda \in K_{-} \tag{4.5}
\end{equation*}
$$

In particular, by Krein's Theorem 2.2 and the remarks after this theorem, the string $S_{\infty}(m)$ is uniquely determined by Γ. Assume $S_{a}(m)$ is a string ($a=0$ or $=\infty$). Consider the right-continuous inverse function m^{d} of m. Then, by definition of $S_{a}(m)$, we have $m^{d}(x) \equiv 0, x<0$, if $a=0$, and $m^{d}(x) \equiv-\infty, x<0$, if $a=\infty$. Therefore, as the dual string $S_{o}^{d}(m)$ of $S_{0}(m) \quad\left(S_{\infty}^{d}(m)\right.$ of $\left.S_{\infty}(m)\right)$ we define $S_{o}^{d}(m):=S_{\infty}\left(m^{d}\right) \quad\left(S_{\infty}^{d}(m):=S_{0}\left(m^{d}\right)\right.$, respectively). All quantities connected with the dual string are superscripted by d. Note that it holds

$$
\begin{align*}
& 1^{d}=m(1), \quad h^{d}=\infty, \quad \text { if } m(1-)+1<\infty, h \in[0, \infty), \tag{4.6}\\
& 1^{d}=m(1-), \quad h^{d}=m(\{1\})<\infty \quad \text { if } m(1-)+1<\infty, \quad h=\infty, \tag{4.7}\\
& 1^{d}=m(1-), \quad \text { if } m(1-)+1=\infty . \tag{4.8}
\end{align*}
$$

Moreover, we have

$$
\begin{aligned}
& \left(S_{0}^{d}(m)\right)^{d}=S_{\infty}^{d}\left(m^{d}\right)=S_{0}(m) \quad \text { and } \\
& \left(s_{\infty}^{d}(m)\right)^{d}=S_{0}^{d}\left(m^{d}\right)=S_{\infty}(m) .
\end{aligned}
$$

LEMMA 4.1: For all $x \in[0,1)$ and all $\lambda \in K_{-}$it holds with the notation $x_{+}:=\inf \left(E_{m} \cap(x, \infty)\right)$

$$
\begin{aligned}
& \Phi_{0}^{\uparrow, d}(m(x), \lambda)=-\lambda^{-1} \Phi_{\infty}^{\uparrow,+}(x, \lambda)=-\lambda^{-1} \Phi_{\infty}^{\uparrow,-}\left(x_{+}, \lambda\right) \\
& \Phi_{0}^{\uparrow, d,+}(m(x), \lambda)=\Phi_{\infty}^{\uparrow}(x, \lambda)+\left(x_{+}-x\right) \Phi_{\infty}^{\uparrow,+}(x, \lambda)=\Phi_{\infty}^{\uparrow}\left(x_{+}, \lambda\right), \\
& \Phi_{\infty}^{\uparrow, d}(m(x), \lambda)=\Phi_{0}^{\uparrow++}(x, \lambda)=\Phi_{0}^{\uparrow,-}\left(x_{+}, \lambda\right) \\
& \Phi_{\infty}^{\uparrow, d,+}(m(x), \lambda)=-\lambda \Phi_{0}^{\uparrow}(x, \lambda)-\lambda\left(x_{+}-x\right) \Phi_{0}^{\uparrow,+}(x, \lambda)=-\lambda \cdot \Phi_{0}^{\uparrow}\left(x_{+}, \lambda\right)
\end{aligned}
$$

The equations remain valid for $x=1$ with $1_{+}:=1+h$ in the case $1+\mathrm{m}(1-)<\infty, h \in[0, \infty)$.

The proof is similar to those of Proposition 2.3. Indeed we have to show that the right-hand side of the first und third equation under consideration satisfy the equations (2.8), (2.7) for $\Phi_{0}^{\uparrow, d}(m(x), \lambda)$ and $\Phi_{\infty}^{\uparrow, d}(m(x), \lambda)$, respectively.
The corresponding equations for the derivatives $\Phi_{a}^{\uparrow, d,+}(m(x), \lambda)$, $a=0, \infty$ follow from (2.7), (2.8) by differentiation (the details are given in Neumann [10]).

COROLLARY 4.2: For every string $S_{\infty}(m)$ the characteristic functions $\Gamma(\lambda)$ and $\Gamma^{d}(\lambda)$ of $S_{\infty}(m)$ and $S_{\infty}\left(m^{d}\right)$, respectively, are connected by

$$
\begin{equation*}
\Gamma^{d}(\lambda)=\frac{-1}{\lambda \Gamma(\lambda)} \quad \lambda \in K_{-} \tag{4.9}
\end{equation*}
$$

Proof: If $S_{\infty}(m)$ is regular and $h \in[0, \infty)$, then $1^{d}<\infty \quad$ and
$h^{d}=\infty$. Thus

$$
\Gamma^{d}(\lambda)=\frac{\Phi_{0}^{\uparrow, d,+}\left(1^{d}, \lambda\right)}{\Phi_{\infty}^{\hat{\lambda}, d,+}\left(1^{d}, \lambda\right)}=-\frac{\Phi_{\infty}^{\uparrow}(1+h, \lambda)}{\lambda \Phi_{0}^{\uparrow}(1+h, \lambda)}=-\frac{1}{\lambda \Gamma(\lambda)}
$$

If $h=\infty$, then $1^{d}+h^{d}<\infty$ and

$$
\Gamma^{d}(\lambda)=\frac{\Phi_{0}^{\uparrow, d^{d}}\left(1^{d}+h^{d}, \lambda\right)}{\Phi_{\infty}^{\lambda_{,}^{d}}\left(1^{d}+h^{d}, \lambda\right)}=-\frac{\Phi_{\infty}^{\uparrow,+}(1, \lambda)}{\lambda \Phi_{0}^{\hat{1}+}(1, \lambda)}=-\frac{1}{\lambda \Gamma(\lambda)} .
$$

In the singular case the proof is obvious by $r=1$, (4.4) and Lemma 4.1.
(For the singular case, (4.9) is well known from Kac, Krein [3].)
For singular strings $S_{\infty}(m)$ the following lemma is known (Kac, Krein [3], p. 83):

LEMMA 4.3: For the spectral measures $\tau_{0}^{(m)}$ and $\tau_{\infty}^{\left(m^{d}\right)}$ of $S_{o}^{(m)}$ and $S_{\infty}\left(m^{d}\right)$, respectively, it holds

$$
\begin{equation*}
\tau_{0}^{(m)}(d \mu)=\mu \cdot \tau_{\infty}^{(m d}(d \mu) \quad \text { on } \quad R_{+} \tag{4.10}
\end{equation*}
$$

Proof: We sketch the proof for the regular case $1+m(1-)<\infty$ only. Obviously, in this case we have $1^{d}+m^{d}\left(1^{d}-\right)<\infty \quad$ also.
The spectrum of $D_{m} D_{x}$ with left boundary condition af ${ }^{-}(0)-f(0)=0$ consists of the zeros $\left\{\mu_{k}: k \geqslant 0\right\}$ of

$$
\begin{array}{lll}
\Phi_{a}^{\uparrow}(1+h, \cdot)=0 & \text { if } & h<\infty \quad \text { and } \\
\Phi_{a}^{\uparrow,+}(1, \cdot)=0 & \text { if } & h=\infty
\end{array}
$$

(See (2.10) above.)
Moreover, we have

$$
\begin{align*}
& \quad \tau_{a}^{(m)}\left(\left\{\mu_{k}\right\}\right)=\left[\int_{0}^{1}\left[\Phi_{a}^{\uparrow}\left(x, \mu_{k}\right)\right]^{2} m(d x)\right]^{-1}, \quad k \geqslant 0 \tag{4.11}\\
& (a=0 \text { or } a=\infty) .
\end{align*}
$$

Firstly, let us assume $h<\infty$. Then $l^{d}=m(1)$ and $h^{d}=\infty \quad$ (see (4.6)) and by Lemma 4.1 it holds

$$
\begin{equation*}
\left.\Phi_{\infty}^{\uparrow, d,+(1} d, \lambda\right)=-\lambda \Phi_{0}^{\uparrow}(r, \lambda) \tag{4.12}
\end{equation*}
$$

If $h=\infty$, then it follows also from (4.7) that $l^{d}=m(1-), h^{d}<\infty$ and from Lemma 4.1 we get

$$
\begin{equation*}
\Phi_{\infty}^{\uparrow, d}\left(1^{d}+h^{d}, \lambda\right)=\Phi_{0}^{\uparrow,+}(1, \lambda) \tag{4.13}
\end{equation*}
$$

Thus we get that the spectra of $S_{0}(m)$ and $S_{\infty}\left(m^{d}\right)$ outside of zero are the same.
Now, the assertion (4.10) follows from (4.11) and the formula

$$
\begin{equation*}
\left.\lambda \int_{0}^{x}\left[\Phi_{0}^{\uparrow}(y, \lambda)\right]^{2} m(d y)=\int_{0}^{m(x)}\left[\Phi_{\infty}^{\uparrow, d}(y, \lambda)\right]^{2} d{ }_{m}^{d y}\right), \quad \lambda \in K_{\ldots} \tag{4.14}
\end{equation*}
$$

(Use Lemma 4.1.)

Now we are ready to prove Theorem 3.2.
The property (3.4) immediately follows from (4.10) and (2.11). We have $c_{m}=m^{d}(0)$ and $m^{d}(0)=\left[\tau_{\infty}^{\left(m^{d}\right)}([0, \infty))\right]^{-1} \quad$ (see (2.16)).
It is known that $\tau_{\infty}^{\left(m^{d}\right)}(\{0\})>0$ implies $\quad 1^{d}=\infty \quad$ with $\quad m^{d}\left(1^{d}\right)<\infty$ or $1^{d}+m^{d}\left(1^{d}\right)<\infty$ with $h^{d}=\infty$. In both cases (2.17) implies

$$
\tau_{\infty}^{\left(m^{d}\right)}(\{0\})=\left(m^{d}\left(1^{d}\right)\right)^{-1}=(1+h)^{-1}=r_{m}^{-1}
$$

(Put $h=0$ if $m(1-)+1=\infty$.)
Thus we get

$$
c_{m}^{-1}=r_{m}^{-1}+\int_{0+}^{\infty} \frac{d \tau_{0}^{(m)}(\mu)}{\mu}
$$

i.e., (3.5) holds. Therefore (i) is proved.

The crucial point to show (ii) and (iii) is (4.10). Indeed, introduce for $s \geqslant 0$ measures σ_{s} on $[0, \infty)$ by

$$
\sigma_{s}(d \mu):=s \cdot \varepsilon_{0}(d \mu)+\tau_{\infty}^{\left(m^{d}\right)}(d \mu) \mathbb{1}_{(0, \infty)}(\mu), \quad \mu \geqslant 0
$$

where ε_{0} denotes the measure concentrated with unit mass at zero. Note that $\tau_{\infty}^{\left(m^{d}\right)}(\cdot)=\sigma_{r_{m}^{-1}}(\cdot)$ and $\tau_{\infty}^{\left(m^{d}\right)}(\{0\})=r_{m}^{-1}$. Then by Krein's Theorem 2.2 for every $s \geqslant 0$ there exists a string $S_{\infty}\left(n_{s}\right)$ with $n_{s}(x)>0$ for $x>0$, i.e. $c_{n_{s}}=0$, having σ_{s} as its spectral measure.

From (2.17) it follows for $s \geqslant 0$ that $n_{s}\left(l_{n_{s}}\right)=s^{-1}$ with $s^{-1}=\infty$
if $s=0$.
Put $q_{s}:=n_{s}^{d}, s \geqslant 0$. Then the original m is included for $s=r_{m}^{-1}$ and from (4.10) we get that the spectral measures $\tau_{0}^{\left(q_{s}\right)}$ do not depend on $s \geqslant 0$ and are equal to $\tau_{0}^{(m)}$. If $s>0$ then

$$
\begin{equation*}
s^{-1}=\sigma_{s}(\{0\})^{-1}=\left(n_{s}\left(1_{s}\right)\right)=r_{q_{s}}<\infty \tag{4.15}
\end{equation*}
$$

and if $s=0$ we get $n_{0}\left(1_{0^{-}}\right)=\infty$, i.e. $\quad l_{q_{0}}=\infty$.
Thus, among all $q_{s}, s \geqslant 0$ we find exactly one infinite string,
namely m_{0}. Note that $q_{s}(0)=c_{n_{s}} \equiv 0$.
To finish the proof of Theorem 3.2 it suffices to identify the equivalence class $\hat{S}(m)$ introduced in Chapter 3 with $\left\{q_{s} \mid s \geqslant 0\right\}$.
We remark that the characteristic function Γ_{s} of q_{s} satisfies (see (4.9), (2.17))

$$
\begin{aligned}
\frac{1}{\Gamma_{s}(\lambda)} & =-\lambda \Gamma_{n_{s}}(\lambda)=-\lambda\left(-\frac{s}{\lambda}+\int_{0-}^{\infty} \frac{d \tau_{\infty}^{\left(m^{d}\right)}(\mu)}{\mu-\lambda}+\frac{1}{r_{m} \lambda}\right) \\
& =\left(s-\frac{1}{r_{m}}\right)-\lambda \Gamma_{m}(\lambda)=\left(s-\frac{1}{r_{m}}\right)+\frac{1}{\Gamma_{m}(\lambda)}, \lambda \in K_{-} .
\end{aligned}
$$

Let us calculate the characteristic function of $S_{\infty}\left(m_{t}\right)$ with $m_{t} \in \hat{S}$, where m_{t} was defined in Lemma 3.1.

LEMMA 4.4: For every $t \geqslant-\frac{1}{r_{m}}$ the corresponding to m_{t} functions $\Phi_{0, t}^{\uparrow}, \Phi_{\infty, t}^{\uparrow}$ are given by

$$
\begin{align*}
& \Phi_{0, t}^{\uparrow}(x, \lambda)=(1-t x) \Phi_{0}^{\uparrow}\left(\frac{x}{1-t x}, \lambda\right) \tag{4.17}\\
& \Phi_{\infty, t}^{\uparrow}(x, \lambda)=(1-t x) \Phi_{\infty}^{\uparrow}\left(\frac{1}{1-t x}, \lambda\right)+t(1-t x) \Phi_{0}^{\uparrow}\left(\frac{1}{1-t x}, \lambda\right) \tag{4.18}
\end{align*}
$$

Proof: The left hand sides of (4.17) and (4.18) are the unique solutions of (2.7) and (2.8) with m replaced by m_{t}, respectively. After scale transformations and some calculations it is seen that the right-hand sides of (4.17) and (4.18) satisfy these equations. This proves the lemma.

COROLLARY 4.5: We have

$$
\begin{equation*}
\frac{1}{\Gamma_{m_{t}}(\lambda)}=\lim _{x \uparrow r_{m_{t}}} \frac{\Phi_{\infty, t}^{\uparrow}(x, \lambda)}{\Phi_{0, t}^{\uparrow}(x, \lambda)}=\frac{1}{\Gamma_{m}(\lambda)}+t, \quad \lambda \in K_{-} \tag{4.19}
\end{equation*}
$$

The proof follows immediately from (4.1), (4.17) and (4.18).

Now, compare (4.19) with (4.16). From Krein's inverse spectral theorem we get $m_{t}=q_{s}$ for $t=s-r_{m}^{-1}$.
Thus Theorem 3.2 is proved.

As a consequence of (4.9), (4.10) we get the formula (2.15):

$$
\begin{align*}
-\frac{1}{\Gamma_{m}(\lambda)} & =\lambda \Gamma_{m}^{d}(\lambda)=\lambda \int_{0-}^{\infty} \frac{d \tau_{\infty}^{\left(m^{d}\right)}(\mu)}{\mu-\lambda} \\
& =-\tau_{\infty}^{\left(m^{d}\right)}(\{0\})-\int_{0+}^{\infty}\left(\frac{1}{\mu}-\frac{1}{\mu-\lambda}\right) d \tau_{0}^{(m)}(\mu) \\
& =-r_{m}^{-1}-\int_{0+}^{\infty}\left(\frac{1}{\mu}-\frac{1}{\mu-\lambda}\right) d \tau_{0}^{(m)}(d \mu), \quad \lambda \in K_{-} \tag{4.20}
\end{align*}
$$

Note, that we have supposed $m(0)=0$. If some $m(\{0\})>0$ is added to m at zero, the term $\lambda m(\{0\})$ is added on the right-hand side of (4.20).

The Corollary 3.3 follows immediately from the Theorem 3.2.

Proof of Theorem 3.4:

Let $S_{a}(m)$ be a string with $a \in(0, \infty)$ and $c_{m}=0$. Put $w:=a$ and define $\tilde{m}(x):=m(x-a), x \in R$. Obviously, it holds $c_{\tilde{m}}=a$ and $r_{\tilde{m}}=r_{\text {m }}+a$.
If τ_{a} and $\tilde{\tau}_{0}$ denote the spectral measures of $S_{a}(m)$ and $S_{0}(\tilde{m})$, respectively, then we have by Proposition 2.3.(iii)

$$
d \tau_{a}(\mu)=a^{2} d \tilde{\tau}_{0}(\mu), \quad \mu>0
$$

From (3.5) it follows

$$
\int_{0+}^{\infty} \frac{d \tau_{a}(\mu)}{\mu}=a^{2} \int_{0+}^{\infty} \frac{d \tilde{\tau}_{0}(\mu)}{\mu}=a^{2}\left(a^{-1}-\left(r_{m}+a\right)^{-1}\right)=a\left(1-\frac{a}{a+r_{m}}\right)
$$

i.e. (3.6) and (3.7) hold.

Conversely, if $a \in(0, \infty)$ is fixed and τ is a measure on $(0, \infty)$ with $\tau((0, \infty))>0$ and (3.7) then choose a number $u \in(0, \infty]$ with

$$
\int_{0+}^{\infty} \frac{d \tau(\mu)}{\mu}=a\left(1-\frac{a}{a+u}\right)
$$

Put

$$
\sigma(d \mu):=a^{-2} \tau(d \mu), \quad \mu \in(0, \infty)
$$

and choose the string $S_{0}(m)$ with $m(0)=0$ and $l_{m}=\infty$ having σ as its spectral measure (see Theorem 3.2.(iii)).
By the same theorem, for every $s \in[0, \infty)$ the string $s_{0}\left(m_{s}\right)$ with

$$
\begin{aligned}
m_{s}(x) & :=(1-s x)^{2} m\left(\frac{x}{1-s x}\right), & & x \in\left[0, s^{-1}\right] \\
& =\infty & & x>s^{-1}
\end{aligned}
$$

has the same spectral measure σ as $\mathrm{s}_{\mathrm{o}}(\mathrm{m})$.
It holds by (3.5)

$$
c_{m_{s}}^{-1}=\int_{0+}^{\infty} \frac{d \sigma(\mu)}{\mu}+r_{m_{s}}^{-1}=\int_{0+}^{\infty} \frac{d \sigma(\mu)}{\mu}+s=a^{-1}\left(1-\frac{a}{a+u}\right)+s .
$$

Now choose s in such a way that $c_{m_{s}}=a$ holds, i.e. put $s=\frac{1}{a+u}$.
By shifting m_{s} to the left

$$
\tilde{m}_{s}(x):=m_{s}(x+a)
$$

we get a string $S_{a}\left(\tilde{m}_{s}\right)$ with $c_{\tilde{m}_{s}}=0$ having τ as its spectral measure. The uniqueness follows from the uniqueness of $S_{o}(m)$ with $l_{m}=\infty$.
For the last part of Theorem 3.4.(ii) note that the strings $S_{0}\left(\frac{m^{\prime}\left(\cdot-a^{\prime}\right)}{\left(a^{\prime}\right)^{2}}\right)$ and $S_{0}\left(\frac{m(\cdot-a)}{a^{2}}\right)$ have the common spectral measure τ (see Proposition 2.3.(iii)).
From Theorem 3.2.(iii) it follows

$$
\begin{aligned}
& S_{0}\left(\frac{m^{\prime}\left(\cdot-a^{\prime}\right)}{\left(a^{\prime}\right)^{2}}\right)=S_{0}\left(\left(\frac{m(\cdot-a)}{a^{2}}\right)_{t}\right) \quad \text { with } \\
& t=\frac{1}{r^{\prime}-a^{\prime}}-\frac{1}{r-a}
\end{aligned}
$$

Proof of Proposition 3.5:
Choose $a^{\prime} \in(0, \infty]$ and consider a string $S_{a}(m)$. Then it holds (see the definition of $r_{\lambda, a^{\prime}}(x, y)$)

$$
\begin{equation*}
r_{\lambda, a}(0,0)=\frac{\Phi^{\downarrow}(0, \lambda)}{\frac{1}{a^{\prime}} \Phi^{\downarrow}(0, \lambda)+1}=\frac{1}{\frac{1}{a^{\top}}+\frac{1}{\Gamma_{m}(\lambda)}} \tag{4.21}
\end{equation*}
$$

and, by definition of the spectral measure $\tau_{a}^{(m)}$,

$$
\begin{equation*}
r_{\lambda, a^{\prime}}(0,0)=\int_{0}^{\infty} \frac{d \tau_{a}^{(m)}(\mu)}{\mu-\lambda} \tag{4.22}
\end{equation*}
$$

Now let be $a \in(0, \infty)$. Then (3.8) is a consequence of

$$
\begin{equation*}
-\frac{1}{\Gamma_{m}(\lambda)} \frac{1}{\frac{1}{a}+\frac{1}{\Gamma_{m}(\lambda)}}\left(a+\Gamma_{m}(\lambda)\right)=-a \tag{4.23}
\end{equation*}
$$

(2.15), (4.21), (4.22) for $a^{\prime}=a$ and $a^{\prime}=\infty$. Letting $a \downarrow 0$ in (4.23) divided by a we get Knight's formula.

References

[1] Dym, H.; McKean, H.P., Gaussian processes, function-theory and the inverse spectral theorem, New York, Academic Press (1976).
[2] Ito, K.; McKean, H.P., Diffusion Processes and their Sample Paths, 2nd Printing, Springer, Berlin (1974).
[3] Kac, I.S.; Krein, M.G., On the spectral functions of the string, Amer. Math. Soc. Trans1., (2) 103 (1974), 19-102.
[4] Karlin, S.; McGregor, J., The differential equations of the birth- and death processes and the Stieltjes moment problem, Trans. Amer. Math. Soc. 85(1957), 489-546.
[5] Knight, F.B., Characterization of the Levy measures of inverse local times of gap diffusion, Progress in Prob. Statist. 1, Birkhäuser, Boston, Mass. 1981.
[6] Kotani, S.; Watanabe, S., Krein's spectral theory of strings and generalized diffusion processes, Lecture Notes of Mathematics Vol. 923, (1981), 235-259.
[7] Küchler, U., Some Asymptotic Properties of the Transition Densities of One-Dimensional Quasidiffusion, Publ. RIMS, KyotoUniversity, 16(1980), 245-268.
[8] Küchler, U., On sojourn times, excursions and spectral measures connected with quasidiffusions, J. Math. Kyoto University, 26(1986), 403-421.
[9] Küchler, U.; Salminen, P., On spectral measures of strings and excursions of quasidiffusions, Lecture Notes of Mathematics Vol. 1372, (1989), 490-502.
[10] Neumann, K., Asymptotische Eigenschaften von Quasidiffusionen und eine Verallgemeinerung des Kreinschen Spektralsatzes, Dissertation A, Humboldt-Universität Berlin, 1989.

