UWE KÜCHLER Kirsten Neumann

An extension of Krein's inverse spectral theorem to strings with nonreflecting left boundaries

Séminaire de probabilités (Strasbourg), tome 25 (1991), p. 354-373 http://www.numdam.org/item?id=SPS 1991 25 354 0>

© Springer-Verlag, Berlin Heidelberg New York, 1991, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ An extension of Krein's inverse spectral theorem to strings with nonreflecting left boundaries

by

Uwe Küchler and Kirsten Neumann

Humboldt-University at Berlin, Department of Mathematics 1086 Berlin, P.O.Box 1297, G.D.R.

<u>Abstract:</u> Krein's inverse spectral theorem describes the spectral measures \mathcal{T} of the differential operators $D_m D_X$ with boundary condition $f_{-}^{i}(0) = 0$, if m runs through all nondecreasing functions on $[0,\infty)$. This result will be extended to boundary conditions of the type $af_{-}^{i}(0) - f(0) = 0$ ($a \in [0,\infty)$). Other conditions as in Krein's theorem appear.

<u>Key words:</u> gap-diffusions, quasidiffusions, generalized second order differential operator, spectral measures, local times, Krein's inverse spectral theorem, Krein's correspondence

60J35, 60J60, 34B20

1. Introduction

It is well-known that every nondecreasing function m on $[0,\infty)$ performed with appropriate boundary conditions at zero and at l := sup supp m (a so-called string) generates a strong Markov process (X_t) on supp m, where supp m denotes the set of points where m increases. This process has as its (selfadjoint) infinitesimal generator in $L_2(m)$ the generalized second order differential operator $D_m D_x$ together with the mentioned boundary conditions. (X_t) is called a quasi- (or gap-) diffusion with speed measure m. Examples are diffusions and birth- and death-processes. Several probabilistic quantities of (X_t) as e.g. transition densities, first hitting time densities, Lévy-measures of the inverse local time at zero, can be expressed in terms of spectral measures $\tau^{(m)}$ of $D_m D_x$ under different boundary conditions, see e.g. Ito, McKean [2], Küchler [7], [8], Küchler, Salminen [9]. An essential result concerning these spectral measures is M.G. Krein's inverse spectral theorem, in a more extended form known as Krein's correspondence theorem, see Kac, Krein [3], Kotani, Watanabe [6]. Roughly speaking it states that the mapping $m \longrightarrow \tau^{(m)}$ is a one-to-one and onto correspondence between the strings m with the "reflecting" boundary condition $f^{-}(0) := f^{1}(0-) = 0$ and the set of all measures τ on $[0, \infty)$ that integrate $(1 + \mu)^{-1}$ thereon, see Theorem 2.2 below. What we are going to do is to study the situation for the boundary conditions

$$af(0) - f(0) = 0$$
,

where $a \in [0, \infty)$ is fixed. (The case above corresponds to $a = \infty$.) If $a \in (0, \infty)$ ("elastic killing boundary"), then there is still a one-to-one and into correspondence (Theorem 2.4). If a = 0, then $m \rightarrow \tau^{(m)}$ maps the strings m with the "killing" boundary condition f(0) = 0 onto the set of measures on $(0, \infty)$ that integrate $[\mu(1+\mu)]^{-1}$, but not one-to-one. In Theorem 3.2 we shall describe the preimages for every τ which form one-parametric families. As an application we get the description of all measures ν that can appear as the Lévy-measure of the inverse local times at zero for quasidiffusions (see Remark 3.6). This result was proved by other (probabilistic) means in Knight [5]. Here we shall present an analytical approach.

Moreover, a generalization of Lemma 1 of Karlin, McGregors paper [4] concerning birth- and death-processes to strings is given (see Corollary 3.7).

2. Strings, spectral measures and Krein's theorem

Here we shall summarize some facts from the theory of generalized second order differential operators $D_m D_X$. For details the reader is referred to Kac, Krein [3] or Dym, McKean [1], the latter uses another terminology.

By R and K we denote the real axis and the complex plane, respectively. R₊ stands for $[0, \infty)$, K₋ for K \ R₊. Put $\overline{R}_+ := [0, \infty]$ and $\frac{1}{\overline{0}} := \infty$, $\frac{1}{\infty} := 0$. Let m be a nondecreasing right-continuous extended real-valued function on R with m(x) = 0, x < 0. Define E_m to be the set of points where m increases and is finite:

 $E_{m} := \{ x \in R_{\perp} | \exists \varepsilon_{0} > 0 : m(x-\varepsilon) < m(x+\varepsilon) < \infty \quad \forall \varepsilon \in (0, \varepsilon_{0}) \}.$

We shall assume $E_m \neq \emptyset$ and denote by the same letter m the measure generated by the function m. Such a measure m is called a speed measure.

Introduce c, l and r by

c := inf E_m = inf {x ≥ 0 | m(x) > 0},

- $1 := \sup E_m \leq \infty$,
- $r := \sup \{x \ge 0 \mid m(x) < \infty \} \le \infty$

We have $0 \le c \le l \le r$ and put h := r - 1 if $1 < \infty$. Otherwise h is irrelevant and for convenience we put h = 0 in this case. Note that h = 0 if $1 < \infty$ and $m(1) = \infty$. If $1 + m(1) < \infty$ and $m(\{1\}) > 0$, then h must be greater than zero. The number r = 1 + h is called the length of the string.

Sometimes we shall write c_m , l_m ,... to express that these numbers come from m.

By artheta we denote the set of all real functions f on R having a representation

$$f(x) = \bar{a} + \bar{b} \cdot x + \int_{0}^{x} (x-s)g(s)m(ds)$$
 (2.1)

for some measurable g on R and some reals $ar{a},\,ar{b}$.

Note that every fG ϑ is continuous and linear on the open intervals of R\E_m.

On ϑ we define a generalized second order differential operator $D_m D_X$ by $D_m D_X f = g$, details can also be found in Küchler [7], [8]. For every fixed $a \in [0, \infty]$ the restriction A_a of $D_m D_X$ to

$$\Delta_{a} := \{ f \in \vartheta \cap L_{2}(m) \mid D_{m}D_{x}f \in L_{2}(m), af(0) - f(0) = 0 \}$$
(2.2)

(for $a = \infty$ we mean f(0) = 0) is a nonnegative selfadjoint operator in $L_2(m)$.

(By f^+ and f^- we denote the right- and left-hand-side derivative of f, respectively.)

Note that $f \in \vartheta \cap L_2(m)$ implies f(r) = 0 if $r = 1 + h < \omega$. Because of the linearity of f on the intervals of $R \setminus E_m$ this can be written as a boundary condition $hf^+(1) + f(1) = 0$ with $f^+(1) = 0$ if $h = \omega$. Otherwise, the boundary condition appearing in (2.2) can also be included in $f \in \vartheta \cap L_2(m)$ if we change m to the left of - a into $m(x) = -\infty$, x < -a.

In the following, m will be understood in this way. This change of m charges -a with infinite mass. The original measure m on R₊ remains unchanged by this procedure if a > 0. In case a = 0, the value of $m({0}^2)$ is not reconstructable. But this does not disturb the corresponding spectral theory, as we will see below. Thus we suppose m(0) = 0 if we consider a = 0. Now m has infinite mass at -a (and r if $r < \infty$) and thus $f \in \sqrt[9]{nL_2(m)}$ implies also f(-a) = 0, i.e. $af^-(0) - f(0) = 0$.

Therefore, the selfadjoint operators A_a are characterized by the (changed) function m, or by (m,a). We call the pair (m,a) a string and denote it by $S_a(m)$. If the length r = 1 + h is infinite, then we say that the string $S_a(m)$ is infinite. Depending on $1 + m(1-) < \omega$ or $= \omega$ the string $S_a(m)$ is called regular or singular. The resolvent operator $R_{\lambda,a} := (A_a - \lambda I)^{-1}$ exists for $\lambda \in (-\infty, 0)$, and it can be shown analogously to Dym, McKean [1] that $R_{\lambda,a}$ is given by

$$(R_{\lambda,a}f)(x) = \int_{0}^{1} r_{\lambda,a}(x,y)f(y)m(dy) , \quad f \in L_{2}(m),$$

where

$$r_{\lambda,a}(x,y) := \frac{\Phi_a^{\uparrow}(x \wedge y, \lambda) \Phi^{\downarrow}(x \gamma y, \lambda)}{w}$$

Here $\Phi_{\mathbf{a}}^{\uparrow}$ and $\overline{\Phi}^{\downarrow}$ denote the solutions feartheta of

 $D_m D_v f + \lambda f = 0$

satisfying the boundary conditions

$$\Phi_{a}^{\dagger}(0,\lambda) = 1, \quad a \in (0,\infty]; \quad \Phi_{o}^{\dagger-}(0,\lambda) = 1, \quad (2.3)$$

$$a \Phi_{a}^{\uparrow-}(0,\lambda) - \Phi_{a}^{\uparrow}(0,\lambda) = 0, \quad a \in [0,\infty); \quad \Phi_{\infty}^{\uparrow-}(0,\lambda) = 0, \quad (2.4)$$

and

$$\overline{\Phi}^{\downarrow -}(0, \lambda) = -1, \quad \text{and} \quad (2.5)$$

$$h \Phi^{\psi^{*}}(1,\lambda) + \Phi^{\psi}(1,\lambda) = 0$$
 (2.6)

Note that $\Phi_a^{\uparrow}(\cdot,\lambda)$ is increasing and $\Phi^{\downarrow}(\cdot,\lambda)$ is decreasing for fixed $\lambda<0$.

W denotes the Wronskian:

$$w = w(\lambda) := \Phi_a^{\uparrow-} \Phi^{\downarrow} - \Phi_a^{\uparrow} \Phi^{\downarrow-}$$

Several times we will use that $\ \ \Phi_a^{\uparrow}(\cdot\,,\lambda\,)$ is the uniquely determined solution of

$$\Phi(\mathbf{x}, \lambda) = 1 + \frac{\mathbf{x}}{a} - \lambda \int_{0}^{\mathbf{x}} (\mathbf{x} - \mathbf{s}) \Phi(\mathbf{s}, \lambda) \mathbf{m}(\mathbf{ds}), \quad \mathbf{x} \in [0, \mathbf{r})$$
(2.7)

for $a \in (0, \infty]$, and of

$$\Phi(\mathbf{x},\lambda) = \mathbf{x} - \lambda \int_{0}^{\mathbf{x}} (\mathbf{x}-\mathbf{s}) \Phi(\mathbf{s},\lambda) \mathbf{m}(\mathbf{ds}), \quad \mathbf{x} \in [0,r)$$
(2.8)

for a = 0. Similarly, ${\ensuremath{\overline{\Phi}}}^{ullet}(\,\cdot\,,\,\lambda\,)$ is the unique solution of

$$\Phi(x,\lambda) = \Phi(0,\lambda) - x - \lambda \int_{0}^{x} (x-s) \Phi(s,\lambda) m(ds), \quad x \in [0,r). \quad (2.9)$$

<u>DEFINITION 2.1:</u> Assume $S_a(m)$ is a string with $a \in [0, \infty]$. Then a measure \mathcal{T} on $[0, \infty)$ is called a spectral measure of $S_a(m)$, if

$$r_{\lambda,a}(x,y) = \int_{0}^{\infty} \frac{\overline{\Phi}_{a}^{\uparrow}(x,\mu) \overline{\Phi}_{a}^{\uparrow}(y,\mu)}{\mu - \lambda} d\widetilde{\tau}(\mu), \quad \lambda < 0; \quad x,y \in E_{m}.$$

The set $supp \tau$ is called the spectrum of $S_p(m)$.

As for the case of $a = \infty$, treated in Kac, Krein [3] and Dym, McKean [1], one can show that for every string $S_a(m)$ a unique spectral measure τ exists (on $(0,\infty)$ if $a \neq 0$). It will often be denoted by $\tau_a^{(m)}$. (We shall identify measures τ on R_{+} and their generating function $\mu \longrightarrow \tau([0,\mu])$.)

function $\mu \longrightarrow \tau([0,\mu])$.) Note that $\Phi_0^{\uparrow}(\cdot,\lambda)$, and therefore $\tau_0^{(m)}$ does not depend on the mass of m at zero. Thus, considering a string $S_0^{(m)}$ we shall always suppose that m(0) = 0.

If the string $S_a(m)$ is regular, then $\tau_a^{(m)}$ is given by

$$\tau_{a}^{(m)}(\mu) = \sum_{k=0}^{\infty} \tau_{a}^{(m)}(\{\mu_{k}\}) \cdot \mathbb{1}_{[0,\mu_{k}]}(\mu)$$
(2.10)

where $(\mu_k)_{k \ge 0}$ denotes the sequence of solutions of

$$h \, \overline{\Phi}_{a}^{\dagger, +}(1, \mu) + \overline{\Phi}_{a}^{\dagger}(1, \mu) = 0$$

and

$$\tau_a^{(m)}(\{\mu_k\}) = \left[\int_0^1 \left[\Phi_a^{\dagger}(x,\mu_k)\right]^2 dm\right]^{-1} .$$

We have

358

$$0 \leq \mu_0 < \mu_1 < \ldots < \mu_n < \ldots$$
 and $\sum_{n \geq 1} \mu_n^{-1} < \infty$

The following theorem answers the question which measures may appear as spectral measures for strings $S_{\infty}(m)$. Its second part is M.G. Krein's inverse spectral theorem, (i) and (ii) together are known as Krein's correspondence (Kotani, Watanabe [6]).

THEOREM 2.2:

(i) For every string $S_{\infty}(m)$ its spectral measure $\tau = \tau_{\infty}^{(m)}$ satisfies

$$\int_{0-1+\mu}^{\infty} \frac{d\tau(\mu)}{1+\mu} < \infty \qquad (2.11)$$

(ii) For every measure τ on R_+ with $\tau(R_+) > 0$ and (2.11) there exists one and only one string $S_{\infty}(m)$ with $c_m = 0$ having τ as its spectral measure.

Note that the condition $c_m = 0$ in (ii) ensures the unicity of m. Indeed, all "shifted" strings $S_{\omega}(m(\cdot -c))$ (c >0) have the same spectral measure, compare Proposition 2.3 below. For every string $S_{\omega}(m)$ its characteristic function $\prod_{m}(\cdot)$ is given by (see Chapter 4 below)

$$\Gamma_{m}(\lambda) := c_{m} + \int_{0-}^{\infty} \frac{d\tau_{\omega}^{(m)}(\mu)}{\mu - \lambda} = \lim_{x \uparrow r} \frac{\Phi_{0}^{\uparrow}(x, \lambda)}{\Phi_{\omega}^{\uparrow}(x, \lambda)}, \quad \lambda \in K_{-}.$$
(2.12)

Because of the definition of the spectral measure we obtain

$$\Phi^{\downarrow}(0,\lambda) = r_{\lambda,\infty}(0,0) = \Gamma_{m}(\lambda) , \quad \lambda < 0.$$
(2.13)

Letting $\lambda \uparrow 0$ in (2.12) we get the formula

$$c_{m} + \int_{0-}^{\infty} \frac{d\tau_{\infty}^{(m)}(\mu)}{\mu} = r = 1 + h$$
 (2.14)

with the understanding that h = 0 if $1 + m(1-) = \infty$. Krein's theorem says that $\prod_{m} (\cdot)$ determines $S_{\infty}(m)$ uniquely. In Chapter 4 below we shall see that it holds

$$-\frac{1}{\Gamma_{m}(\lambda)} = \lambda m(\{0\}) - r_{m}^{-1} - \int_{0}^{\infty} (\frac{1}{\mu} - \frac{1}{\mu - \lambda}) \tau_{0}^{(m)}(d\mu), \quad \lambda \in K_{-}. \quad (2.15)$$

For every string $S_{\infty}(m)$ with $c_m = 0$ we have

$$\tau_{\infty}^{(m)}(R_{+}) = [m(\{0\})]^{-1} . \qquad (2.16)$$

Indeed, consider $\lambda \prod_{m} (\lambda)$ for $\lambda \downarrow -\infty$ and compare (2.12) and (2.15), then (2.16) is obvious.

Finally, note that $\Upsilon_{\infty}^{(m)}(\{0\}\}>0$ if and only if the constant function $\Phi_{\infty}^{\uparrow}(\cdot,0) \equiv 1$ is an eigenfunction of $D_m D_x$. This holds if and only if $r = 1 + h = \infty$ (or $1 = \infty$) and $m(1-) < \infty$. Moreover, in this case we have

$$\mathcal{T}^{(m)}_{\infty}(\{0\}) = [m(1)]^{-1}$$
 (2.17)

The next proposition shows how the spectral measure changes if m suffers certain transformations.

<u>PROPOSITION 2.3</u>: Let $S_a(m)$ be a string with $a \in [0,\infty]$ and assume $u, v \in (0,\infty)$, $w \in [0,\frac{a}{u}]$ and $w < \infty$. Define

$$\widetilde{\mathfrak{m}}(\mathbf{x}) := \mathbf{v} \cdot \mathfrak{m}(\mathbf{u}(\mathbf{x} - \mathbf{w})) , \qquad \mathbf{x} \in \mathbb{R},$$

 $\widetilde{\mathbf{a}} := \frac{\mathbf{a}}{\mathbf{u}} - \mathbf{w} .$

Then, for the spectral measures $\tilde{\tau}_{\widetilde{a}} := \tau_{\widetilde{a}}^{(\widetilde{m})}$ and $\tau_a := \tau_a^{(m)}$ of $S_{\widetilde{a}}(\widetilde{m})$ and $S_{a}(m)$, respectively, we have

(i) If
$$a = \infty$$
, then for all $w \in [0, \infty)$ we have $\tilde{a} = \infty$ and
 $\tilde{\tau}_{\infty}(\mu) = v^{-1} \tau_{\infty}(\frac{v}{u} \cdot \mu)$, $\mu \ge 0$.

(ii) If
$$a \in (0, \infty)$$
, $0 \le w \le \frac{a}{u}$, then $\widetilde{a} \in (0, \infty)$ and
 $\widetilde{\tau}_{\widetilde{a}}(\mu) = v^{-1}(1 - \frac{uw}{a})^2 \tau_a(\frac{v}{u} \cdot \mu)$, $\mu \ge 0$.

(iii) If $a \in (0, \infty)$, $w = \frac{a}{u}$, then $\tilde{a} = 0$ and $\tilde{\tau}_{o}(\mu) = v^{-1}(\frac{u}{a})^{2}\tau_{a}(\frac{v}{u}, \mu)$, $\mu \ge 0$.

(iv) If a = w = 0, then

. .

$$\widetilde{\tau}_{0}(\mu) = v^{-1} \cdot u^{2} \tau_{0}(\frac{v}{u} \cdot \mu) , \qquad \mu \ge 0.$$

To prove this proposition one calculates the relevant $\widetilde{\Phi}_{\widehat{a}}^{\uparrow}$ and $\widetilde{\Phi}^{\downarrow}$ in terms of Φ_{a}^{\uparrow} and Φ^{\downarrow} , respectively, using (2.7 - 2.9). This gives the relation between the resolvent kernels $\widetilde{r}_{\chi,\widehat{a}}$ and $r_{\lambda,a}$. Definition 2.1 leads to the assertion of Proposition 2.3. 3. Results

In this chapter we shall formulate correspondence theorems for strings $S_a(m)$ with a $\neq \infty$ which extend Krein's result. The proofs can be found in Chapter 4.

We shall start with the case of a = 0. For this purpose we still need a preparation.

Denote by Σ the set of all strings $S_0(m)$ with m(0) = 0. We introduce a relation \sim in Σ by defining $S_0(m) \sim S_0(n)$ if there exists a real number $t \ge -\frac{1}{r_0}$ such that the transformation

$$x \longrightarrow T_t x := \frac{x}{1 - tx}$$
, $x \in \mathbb{R}$

maps $(0,r_m)$ onto $(0,r_n)$ and such that

$$m(x) = \int_{0+}^{x} (1-ts)^{-2} dn(T_t s) , \qquad x \in (0, r_m) \qquad (3.1)$$

(indeed, $t = \frac{1}{r_m} - \frac{1}{r_n}$.) It is easy to see that \sim forms an equivalence relation in Σ . Put $\hat{\Sigma} := \Sigma / \sim$ and for every string $S_0(m) \in \Sigma$ denote by $\hat{S}(m)$ the element of $\hat{\Sigma}$ generated by $S_0(m)$. For every string $S_0(m)$ and every $t \ge -\frac{1}{r_m}$ we define a new string $S_0(m_t)$ by $r_m_t := \frac{r_m}{1 + tr_m}$ and

Obviously, we have

$$c_{m} = \frac{c_{m}}{1 + tc_{m}}, \quad l_{m} = \frac{l_{m}}{1 + tl_{m}}, \quad t \ge -\frac{1}{r_{m}}, \quad (3.3)$$

and $S_0(m_t) \sim S_0(m)$ for every $t \ge -\frac{1}{r_m}$. Otherwise, if $S_0(n) \sim S_0(m)$, then, by definition, there exists a real number $t \ge -\frac{1}{r_n}$ such that $m = n_t$. Observe $r_m = \infty$ if and only if $t = -\frac{1}{r_m}$. Thus we have proved the following

Thus we have proved the following

LEMMA 3.1:

- (i) For every string $S_0(m)$ its equivalence class $\hat{S}(m)$ is equal to $\{S_0(m_t) \mid t \ge -\frac{1}{r_m}\}$.
- (ii) Every equivalence class $\hat{S} \in \hat{\Sigma}$ contains one and only one infinite string $S_0(\mathbf{m})$.

Now we are ready to formulate the analogue of Krein's correspondence for strings $S_{n}(m)$.

THEOREM 3.2:

(i) For every string $S_0(m)$ its spectral measure $\tau = \tau_0^{(m)}$ is supported by $(0, \infty)$ and has the property

$$\int_{0+}^{\infty} \frac{d\tau(\mu)}{\mu(1+\mu)} < \infty \quad . \tag{3.4}$$

Moreover, it holds

$$\int_{0+\mu}^{\infty} \frac{d\tau(\mu)}{\mu} = c_{m}^{-1} - r_{m}^{-1} . \qquad (3.5)$$

- (ii) If two strings $S_0(m)$ and $S_0(n)$ are equivalent (with respect to \sim), then $\tau_0^{(m)} = \tau_0^{(n)}$.
- (iii) For every measure τ on $(0,\infty)$ $(\tau((0,\infty))>0)$ with (3.4) and every $r \in (0,\infty]$ there exists one and only one string $S_0(m)$ with length $r = r_m$ having τ as its spectral measure. If $S_0(m)$ and $S_0(m')$ are strings with the lengths r and r', respectively, having the same spectral measure, then $S_0(m') = S_0(m_t)$ holds with $t = \frac{1}{r} - \frac{1}{r} \cdot (m_t)$ was defined in (3.2).

This theorem can be reformulated in a shorter way as follows.

<u>COROLLARY 3.3:</u> There is a one-to-one and onto correspondence between the set $\hat{\Sigma}$ of equivalence classes \hat{S} of strings $S_0(m)$ and the set of measures τ on $(0,\infty)$ satisfying (3.4), where τ is the spectral measure $\tau_0^{(m)}$ of every string $S_0(m)$ from \hat{S} .

Now let us turn to the case of $a \in (0, \infty)$.

<u>THEOREM 3.4:</u> Assume $a \in (0, \infty)$. Then it holds:

(i) For every string $S_a(m)$ with $c_m = 0$ and $m(0) \ge 0$ its spectral measure $\tau = \tau_a^{(m)}$ is supported on $(0, \infty)$ and has the property

$$\int_{0+}^{\infty} \frac{d\tau(\mu)}{\mu} = \left(\frac{1}{r_{m}} + \frac{1}{a}\right)^{-1} < \infty$$
(3.6)

(ii) If τ is a measure on $(0, \infty)$ with nonzero mass, then there exists a string $S_a(m)$ with $c_m = 0$ having τ as its spectral measure if and only if

$$g(\tau) := \int_{0+}^{\infty} \frac{d\tau(\mu)}{\mu} \leq a . \qquad (3.7)$$

In this case, $S_a(m)$ is uniquely determined. Moreover, if $S_a(m)$ and $S_{a'}(m')$ with $a,a' \in (0,\infty)$, $c_m = c_m = 0$, have the same spectral measure, then

$$m'(x - a') = m_t(x - a)$$
, $x \in R_+$
with $t := \frac{1}{a'} - \frac{1}{a}$, where m_t was defined in (3.2).

Consider a speed measure m on $[0, \infty)$ with $c_m = 0$, $m(0) \ge 0$ and form strings $S_{\infty}(m)$, $S_a(m)$ and $S_o(m)$ for some $a \in (0, \infty)$. (Note that $m(\{0\})$ disappears if we construct $S_o(m)$.) Then we have

<u>PROPOSITION 3.5</u>: Between the spectral measures τ_{ω} , τ_{a} and τ_{o} of $S_{\omega}(m)$, $S_{a}(m)$ with $a \in (0, \infty)$ and $S_{o}(m)$, respectively, the following equation holds:

$$\begin{bmatrix} \lambda_{m}(0) - r_{m}^{-1} - \int_{0+}^{\infty} (\frac{1}{\mu} - \frac{1}{\mu - \lambda}) d\tau_{0}(\mu) \end{bmatrix} \cdot \\ \cdot \begin{bmatrix} \int_{0+}^{\infty} \frac{d\tau_{a}(\mu)}{\mu - \lambda} \end{bmatrix} \cdot \begin{bmatrix} a + \int_{0-}^{\infty} \frac{d\tau_{\omega}(\mu)}{\mu - \lambda} \end{bmatrix} = -a , \qquad \lambda \in K_{-} .$$
(3.8)

This generalizes a formula which was used by Knight [5], p. 60. Consider a string $S_{\infty}(m)$ and add to m some point mass $m_0 > 0$ at zero if necessary, i.e. if $c_m > 0$. As we know, this does not touch the spectral measure $T_0^{(m)}$ of $S_0(m)$. Now, let 1(t,0), $t \ge 0$, be the local time at zero of the quasidiffusion generated by $S_{\infty}(m)$. Since $0 \in E_m$, this notion makes sense. Then $(1^{-1}(t,0), t \ge 0)$ is an increasing process with independent stationary increments and it holds

$$E_{0} \exp(\lambda 1^{-1}(t,0)) = \exp(-\frac{t}{\prod_{m}(\lambda)}), \qquad \lambda < 0, t \ge 0.$$

(See e.g. Knight [5] or Küchler [8].) For $\lambda < 0$, (2.15) implies

$$-\frac{1}{\Gamma_{m}(\lambda)} = \lambda_{m}(\{0\}) - \frac{1}{\Gamma_{m}} - \int_{0}^{\infty} (1 - e^{\lambda \gamma}) \Big[\int_{0+}^{\infty} e^{-\mu \gamma} \tau_{0}^{(m)}(d\mu) \Big] d\gamma.$$

Thus, by Theorem 3.2(ii) and Lemma 3.1(i) the Lévy-measure n of $1^{-1}(.,0)$, given by

$$dn(y) := \int_{0+}^{\infty} e^{-\mu \gamma} \tau_{0}^{(m)}(d\mu) dy , \qquad y \in R_{+}, \qquad (3.9)$$

is the same for all $S_{\infty}(m_t)$, $t \ge -\frac{1}{r_m}$.

This means that the inverse local times at zero of the quasidiffusions corresponding to $S_{\infty}(m_t)$ differ in their killing rate $k = \frac{1}{r_m} + t$ only. Now Theorem 3.2 implies

<u>COROLLARY 3.6</u>: For every nontrivial measure \mathcal{T} on $(0, \infty)$ with (3.4), every $\mathfrak{m}(\{0\}) > 0$ and every constant $k \ge 0$ there exists a quasidiffusion with speed measure m, a reflecting boundary at zero and length $\frac{1}{k}$ of the string $S_{\infty}(\mathfrak{m})$ such that $1^{-1}(\cdot, 0)$ has the Lévy-measure (3.9).

This result was proved by other means in Knight [5]. As an example consider a birth- and death-process on the set of non-negative integers with the intensities $\mu_0 \ge 0$, $\lambda_i > 0$, $\mu_{i+1} > 0$, $i \ge 0$. Then

$$\begin{split} \mathbf{m}(\mathbf{x}) &:= \sum_{i=0}^{\infty} \mathbf{m}_{i} \cdot \mathbf{1}_{[0,\mathbf{x}]}(\mathbf{x}_{i}) \\ \text{with} & \mathbf{x}_{0} := 0 , \quad \mathbf{x}_{i} := \sum_{j=0}^{j-1} \frac{1}{\lambda_{j}\mathbf{m}_{j}} , \\ \mathbf{m}_{0} := 1 , \quad \mathbf{m}_{i} := \frac{i}{||} \frac{\lambda_{j-1}}{\mu_{j}} , \quad i \ge 1 \end{split}$$

and a := μ_0^{-1} , h > 0 define a string S_a(m). (Necessarily, h = 0 if m is singular.) We have

$$D_{\mathbf{m}}D_{\mathbf{x}}f(\mathbf{x}_{i}) = \left[\frac{\Delta f(\mathbf{x}_{i})}{\Delta \mathbf{x}_{i}} - \frac{\Delta f(\mathbf{x}_{i-1})}{\Delta \mathbf{x}_{i-1}}\right] \cdot \mathbf{m}_{i}^{-1} =$$
$$= \lambda_{i} f(\mathbf{x}_{i+1}) - (\lambda_{i} + \mu_{i})f(\mathbf{x}_{i}) + \mu_{i}f(\mathbf{x}_{i-1}), \quad i \ge 1$$

with $\Delta u(x_j) := u(x_{j+1}) - u(x_j)$. Moreover,

$$D_{m}D_{x}f(x_{0}) = \frac{\frac{\Delta f(x_{0})}{x_{1}} - f(x_{0})}{\frac{m_{0}}{m_{0}}} \quad \text{and}$$

the boundary condition

$$af(x_0) - f(x_0) = 0$$

is equivalent to

$$D_m D_x f(x_0) = -(\lambda_0 + \mu_0) f(x_0) + \lambda_0 f(x_1)$$

Thus, we have

$$\overline{\Phi}_{\mathbf{a}}^{\dagger}(\mathbf{x}_{i}, \lambda) = \mathsf{Q}_{i}(\lambda) , \qquad i \ge 0, \ \lambda \in \mathbb{R}$$

in the terminology of Karlin, McGregor [4]. The spectral measure $\tau_a^{(m)}$ of $S_a(m)$ is a solution of the Stieltjes moment problem connected with the Jacobi-matrix (a_{ij}) with

$$\mathbf{a_{ij}} := \lambda_i \mathbf{1}_1(j-i) + \mu_i \mathbf{1}_1(i-j) - (\lambda_i + \mu_i) \mathbf{1}_0(i-j) \quad (i,j \ge 0).$$

Indeed, for $\lambda \longrightarrow -\infty$ we have

$$\|-\lambda R_{\lambda,a}f - f\|_{L_2(m)} \longrightarrow 0, \qquad f \in L_2(m).$$

Consequently,

$$\langle -\lambda R_{\lambda,a}f,g \rangle_{L_2(m)} \longrightarrow \langle f,g \rangle_{L_2(m)}$$
, $f,g \in L_2(m)$,

Choosing $f = 1_{\{x_i\}}, g = 1_{\{x_j\}}$ we obtain

$$\lim_{\lambda \to -\infty} -\lambda r_{\lambda,a}(x_i, x_j) = \int_{0}^{\infty} \Phi_a^{\uparrow}(x_i, \mu) \Phi_a^{\uparrow}(x_j, \mu) d\tau_a^{(m)}(\mu) = \frac{\delta_{ij}}{m_i}, \quad i, j \ge 0$$

Compare this equation with Theorem 1 of Karlin, McGregor [4], p. 494 to get the assertion.

Now, Lemma 1 of Karlin, McGregor [4] can be generalized to strings as follows.

<u>COROLLARY 3.7:</u> Given a string $S_{\infty}(m)$ with $c_m = 0$ and with the spectral measure τ and assume a > 0. Then there exists a string $S_a(m')$ with $c_m = 0$ having the same spectral measure τ if and only if

$$r_{\rm m} = l_{\rm m} + h_{\rm m} \le a . \tag{3.10}$$

<u>Proof</u>: If $\mathcal{T}(\{0\}\} > 0$, then there does not exist such a string $S_{g}(m^{l})$ because, for a $\neq \infty$, the spectral measure is concentrated on $(0, \infty)$. Otherwise, $r_{m} = \infty$, see the remarks before (2.17). Assume $\mathcal{T}(\{0\}\} = 0$. From (2.14) we know $r_{m} = \int_{0}^{\infty} \frac{d\mathcal{T}(\mu)}{\mu}$. Now apply Theorem 3.4(ii).

4. Proofs

At first we shall collect some results of the spectral theory of $D_m D_x$. For details see e.g. Kac, Krein [3]. Let us given a string $S_{\infty}(m)$. The characteristic function $\Gamma(\cdot)$ of $S_{\infty}(m)$ is given by the limit (see (2.12))

$$\Gamma(\lambda) = \lim_{x \uparrow r} \frac{\overline{\Phi}_{0}^{\uparrow}(x, \lambda)}{\overline{\Phi}_{\infty}^{\uparrow}(x, \lambda)}, \qquad \lambda \in K_{-}. \quad (4.1)$$

In the regular case we have for $h < \infty$

$$\Gamma(\lambda) = \frac{\underline{\Phi}_{0}^{\dagger}(\mathbf{r},\lambda)}{\underline{\Phi}_{\infty}^{\dagger}(\mathbf{r},\lambda)} = \frac{\underline{\Phi}_{0}^{\dagger,+}(1,\lambda)\cdot\mathbf{h} + \underline{\Phi}_{0}^{\dagger}(1,\lambda)}{\underline{\Phi}_{\infty}^{\dagger,+}(1,\lambda)\cdot\mathbf{h} + \underline{\Phi}_{\infty}^{\dagger}(1,\lambda)}, \qquad (4.2)$$

and for $h = \infty$ it holds

$$\Gamma(\lambda) = \frac{\Phi_0^{\uparrow,+}(1,\lambda)}{\Phi_{\infty}^{\uparrow,+}(1,\lambda)} .$$
(4.3)

If $S_{\infty}(m)$ is singular, then besides of (4.1) it holds

$$\Gamma(\lambda) = \lim_{x \uparrow r} \frac{\underline{\Phi}_{0}^{\uparrow,+}(x,\lambda)}{\underline{\Phi}_{\infty}^{\uparrow,+}(x,\lambda)}, \qquad \qquad \lambda \in \mathbb{K}_{-}. \quad (4.4)$$

Moreover, we have the representation (see (2.12))

$$\Gamma(\lambda) = c_{\rm m} + \int_{0-}^{\infty} \frac{d\hat{\tau}_{\omega}^{(\rm m)}(\mu)}{\mu - \lambda}, \qquad \lambda \in K_{\rm s}. \quad (4.5)$$

In particular, by Krein's Theorem 2.2 and the remarks after this theorem, the string $S_{\omega}(m)$ is uniquely determined by Γ . Assume $S_a(m)$ is a string (a = 0 or = ∞). Consider the right-continuous inverse function m^d of m. Then, by definition of $S_a(m)$, we have $m^d(x) \equiv 0, x < 0$, if a = 0, and $m^d(x) \equiv -\infty, x < 0$, if a = ∞ . Therefore, as the dual string $S_0^d(m)$ of $S_0(m)$ ($S_{\omega}^d(m)$ of $S_{\omega}(m)$) we define $S_0^d(m) := S_{\omega}(m^d)$ ($S_{\omega}^d(m) := S_0(m^d)$, respectively). All quantities connected with the dual string are superscripted by d. Note that it holds

$$l^{\mathbf{d}} = \mathfrak{m}(1)$$
, $h^{\mathbf{d}} = \infty$, if $\mathfrak{m}(1-) + l \leq \infty$, $h \in [0, \infty)$, (4.6)

$$h^{d} = m(1-), h^{d} = m(\{1\}) < \infty$$
 if $m(1-) + 1 < \infty$, $h = \infty$, (4.7)

$$1^{\rm C} = m(1-), \text{ if } m(1-) + 1 = \infty .$$
 (4.8)

Moreover, we have

$$(S_0^d(m))^d = S_{\omega}^d(m^d) = S_0(m)$$
 and
 $(S_{\omega}^d(m))^d = S_0^d(m^d) = S_{\omega}(m)$.

LEMMA 4.1: For all $x \in [0,1)$ and all $\lambda \in K_$ it holds with the notation $x_{\downarrow} := \inf(E_{m} \cap (x, \infty))$

$$\begin{split} & \Phi_{o}^{\uparrow,d}(\mathbf{m}(\mathbf{x}),\lambda) = -\lambda^{-1} \Phi_{\infty}^{\uparrow,+}(\mathbf{x},\lambda) = -\lambda^{-1} \Phi_{\infty}^{\uparrow,-}(\mathbf{x}_{+},\lambda), \\ & \Phi_{o}^{\uparrow,d,+}(\mathbf{m}(\mathbf{x}),\lambda) = \Phi_{\infty}^{\uparrow}(\mathbf{x},\lambda) + (\mathbf{x}_{+}-\mathbf{x}) \Phi_{\infty}^{\uparrow,+}(\mathbf{x},\lambda) = \Phi_{\infty}^{\uparrow}(\mathbf{x}_{+},\lambda), \\ & \Phi_{\infty}^{\uparrow,d}(\mathbf{m}(\mathbf{x}),\lambda) = \Phi_{o}^{\uparrow,+}(\mathbf{x},\lambda) = \Phi_{o}^{\uparrow,-}(\mathbf{x}_{+},\lambda) \\ & \Phi_{\infty}^{\uparrow,d,+}(\mathbf{m}(\mathbf{x}),\lambda) = -\lambda \Phi_{o}^{\uparrow}(\mathbf{x},\lambda) - \lambda(\mathbf{x}_{+}-\mathbf{x}) \Phi_{o}^{\uparrow,+}(\mathbf{x},\lambda) = -\lambda \Phi_{o}^{\uparrow}(\mathbf{x}_{+},\lambda). \end{split}$$

The equations remain valid for x = 1 with $1_+ := 1 + h$ in the case $1 + m(1-) < \infty$, $h \in [0, \infty)$.

The proof is similar to those of Proposition 2.3. Indeed we have to show that the right-hand side of the first und third equation under consideration satisfy the equations (2.8), (2.7) for $\overline{\Phi}_0^{\uparrow, d}(\mathbf{m}(\mathbf{x}), \lambda)$ and $\overline{\Phi}_{\infty}^{\uparrow, d}(\mathbf{m}(\mathbf{x}), \lambda)$, respectively.

The corresponding equations for the derivatives $\overline{\Phi}_{a}^{\uparrow,d,+}(\mathbf{m}(\mathbf{x}),\lambda)$, $a = 0,\infty$ follow from (2.7), (2.8) by differentiation (the details are given in Neumann [10]).

<u>COROLLARY 4.2:</u> For every string $S_{\infty}(m)$ the characteristic functions $\Gamma(\lambda)$ and $\Gamma^{d}(\lambda)$ of $S_{\infty}(m)$ and $S_{\infty}(m^{d})$, respectively, are connected by

$$\Gamma^{d}(\lambda) = \frac{-1}{\lambda \Gamma(\lambda)} \qquad \qquad \lambda \in \kappa_{-}.$$
 (4.9)

<u>Proof:</u> If $S_{\infty}(m)$ is regular and $h \in [0, \infty)$, then $1^d < \infty$ and $h^d = \infty$. Thus

$$\Gamma^{d}(\lambda) = \frac{\Phi_{o}^{\uparrow,d,+}(1^{d},\lambda)}{\Phi_{\infty}^{\uparrow,d,+}(1^{d},\lambda)} = -\frac{\Phi_{\infty}^{\uparrow}(1+h,\lambda)}{\lambda \Phi_{o}^{\uparrow}(1+h,\lambda)} = -\frac{1}{\lambda \Gamma(\lambda)}$$

If $h = \infty$, then $1^d + h^d < \infty$ and

$$\Gamma^{\mathbf{d}}(\lambda) = \frac{\underline{\Phi}_{\mathbf{o}}^{\uparrow,\mathbf{d}}(\mathbf{1}^{\mathbf{d}}+\mathbf{h}^{\mathbf{d}},\lambda)}{\underline{\Phi}_{\infty}^{\uparrow,\mathbf{d}}(\mathbf{1}^{\mathbf{d}}+\mathbf{h}^{\mathbf{d}},\lambda)} = -\frac{\underline{\Phi}_{\infty}^{\uparrow,+}(\mathbf{1},\lambda)}{\lambda \underline{\Phi}_{\mathbf{o}}^{\uparrow,+}(\mathbf{1},\lambda)} = -\frac{1}{\lambda \Gamma(\lambda)}$$

In the singular case the proof is obvious by r = 1, (4.4) and Lemma 4.1.

(For the singular case, (4.9) is well known from Kac, Krein [3].)

For singular strings $S_{\infty}(m)$ the following lemma is known (Kac, Krein [3], p. 83):

LEMMA 4.3: For the spectral measures $\tau_0^{(m)}$ and $\tau_{\infty}^{(m^d)}$ of $S_0^{(m)}$ and $S_{\infty}(m^d)$, respectively, it holds $\tau_0^{(m)}(d\mu) = \mu \cdot \tau_{\infty}^{(m^d)}(d\mu)$ on R_+ . (4.10)

<u>Proof:</u> We sketch the proof for the regular case $1 + m(1-) < \infty$ only. Obviously, in this case we have $1^d + m^d(1^d-) < \infty$ also. The spectrum of $D_m D_x$ with left boundary condition $af^-(0) - f(0) = 0$ consists of the zeros $\{\mu_k : k \ge 0\}$ of

$$\overline{\Phi}_{a}^{\dagger}(1+h,\cdot) = 0 \quad \text{if } h < \infty \quad \text{and}$$

$$\overline{\Phi}_{a}^{\dagger,+}(1,\cdot) = 0 \quad \text{if } h = \infty .$$

(See (2.10) above.) Moreover, we have

$$\tau_{a}^{(m)}(\{\mu_{k}\}) = \left[\int_{0}^{1} \left[\Phi_{a}^{\dagger}(x,\mu_{k}) \right]^{2} m(dx) \right]^{-1} , \quad k \ge 0$$
 (4.11)

 $(a = 0 \text{ or } a = \infty).$

Firstly, let us assume $h \not\sim \infty$. Then $1^d = m(1)$ and $h^d = \infty$ (see (4.6)) and by Lemma 4.1 it holds

$$\Phi_{\infty}^{\uparrow,d,+}(1^{d},\lambda) = -\lambda \Phi_{0}^{\uparrow}(r,\lambda) . \qquad (4.12)$$

If $h = \infty$, then it follows also from (4.7) that $1^d = m(1-)$, $h^d < \infty$ and from Lemma 4.1 we get

$$\bar{\Phi}^{\uparrow, \mathsf{d}}_{\infty}(1^{\mathsf{d}} + \mathsf{h}^{\mathsf{d}}, \lambda) = \bar{\Phi}^{\uparrow, +}_{\mathsf{o}}(1, \lambda).$$
(4.13)

Thus we get that the spectra of $S_o(m)$ and $S_{oo}(m^d)$ outside of zero are the same.

Now, the assertion (4.10) follows from (4.11) and the formula

$$\lambda \int_{0}^{x} \left[\Phi_{0}^{\uparrow}(y,\lambda) \right]^{2} m(dy) = \int_{0}^{\pi} \left[\Phi_{\infty}^{\uparrow,d}(y,\lambda) \right]^{2} m^{d}(dy), \quad \lambda \in K_{-}. \quad (4.14)$$

(Use Lemma 4.1.)

Now we are ready to prove Theorem 3.2. The property (3.4) immediately follows from (4.10) and (2.11). We have $c_m = m^d(0)$ and $m^d(0) = [\tau_{\infty}^{(m^d)}([0,\infty))]^{-1}$ (see (2.16)). It is known that $\tau_{\infty}^{(m^d)}(\{0\}) > 0$ implies $1^d = \infty$ with $m^d(1^d) < \infty$ or $1^d + m^d(1^d) < \infty$ with $h^d = \infty$. In both cases (2.17) implies $\tau_{\infty}^{(m^d)}(\{0\}) = (m^d(1^d))^{-1} = (1+h)^{-1} = r_m^{-1}$.

(Put h = 0 if $m(1-) + 1 = \infty$.) Thus we get

$$c_{m}^{-1} = r_{m}^{-1} + \int_{0+}^{\infty} \frac{d\tau_{0}^{(m)}(\mu)}{\mu}$$

i.e., (3.5) holds. Therefore (i) is proved. The crucial point to show (ii) and (iii) is (4.10). Indeed, introduce for $s \ge 0$ measures \mathcal{G}_s on $[0, \infty)$ by

$$\mathsf{G}_{\mathbf{s}}(\mathsf{d}\mu) := \mathbf{s} \cdot \mathcal{E}_{\mathbf{o}}(\mathsf{d}\mu) + \gamma_{\boldsymbol{\omega}}^{(\mathfrak{m}^{\mathbf{d}})}(\mathsf{d}\mu) \, \boldsymbol{1}_{(0,\boldsymbol{\omega})}(\mu) \,, \qquad \mu \ge 0 \,,$$

where \mathcal{E}_{o} denotes the measure concentrated with unit mass at zero. Note that $\mathcal{T}_{\infty}^{(m^{d})}(\cdot) = \mathcal{G}_{r_{m}^{-1}}(\cdot)$ and $\mathcal{T}_{\infty}^{(m^{d})}(\{0\}) = r_{m}^{-1}$. Then by Krein's Theorem 2.2 for every $s \ge 0$ there exists a string $S_{\infty}(n_{s})$ with $n_{s}(x) \ge 0$ for $x \ge 0$, i.e. $c_{n_{s}} = 0$, having \mathcal{G}_{s} as its spectral measure. From (2.17) it follows for $s \ge 0$ that $n_s(1_{n_s}) = s^{-1}$ with $s^{-1} = \infty$ if s = 0. Put $q_s := n_s^d$, $s \ge 0$. Then the original m is included for $s = r_m^{-1}$ and from (4.10) we get that the spectral measures \mathcal{T}_0 do not depend on $s \ge 0$ and are equal to $\mathcal{T}_0^{(m)}$. If s > 0 then

$$s^{-1} = \tilde{o}_{s}(\{0\})^{-1} = (n_{s}(1_{s})) = r_{q_{s}} < \infty$$
, (4.15)

and if s = 0 we get $n_0(1_0^{-}) = \infty$, i.e. $1_{q_0} = \infty$. Thus, among all q_g , $s \ge 0$ we find exactly one infinite string, namely m_0^{-} . Note that $q_g(0) = c_{n_g}^{-} \equiv 0$. To finish the proof of Theorem 3.2 it suffices to identify the equivalence class $\hat{S}(m)$ introduced in Chapter 3 with $\{q_g \mid s \ge 0\}$. We remark that the characteristic function Γ_g^{-} of q_g^{-} satisfies (see (4.9), (2.17))

$$\frac{1}{\Gamma_{s}(\lambda)} = -\lambda \Gamma_{n_{s}}(\lambda) = -\lambda (-\frac{s}{\lambda} + \int_{0-\frac{1}{\mu}-\lambda}^{\infty} \frac{d\mathfrak{C}_{\infty}^{(m^{-})}(\mu)}{\mu - \lambda} + \frac{1}{\Gamma_{m}\lambda})$$
$$= (s - \frac{1}{\Gamma_{m}}) - \lambda \Gamma_{m}d(\lambda) = (s - \frac{1}{\Gamma_{m}}) + \frac{1}{\Gamma_{m}(\lambda)}, \quad \lambda \in K_{-}. \quad (4.16)$$

Let us calculate the characteristic function of $S_{00}(m_t)$ with $m_t \in \hat{S}$, where m_t was defined in Lemma 3.1.

$$\frac{\text{LEMMA 4.4:}}{\Phi_{o,t}^{\dagger}, \Phi_{o,t}^{\dagger}} \text{ for every } t \ge -\frac{1}{\Gamma_{m}} \text{ the corresponding to } \mathfrak{m}_{t} \text{ functions}$$

$$\Phi_{o,t}^{\dagger}, \Phi_{\infty,t}^{\dagger} \text{ are given by}$$

$$\Phi_{o,t}^{\dagger}(x,\lambda) = (1-tx)\Phi_{o}^{\dagger}(\frac{x}{1-tx},\lambda) \qquad (4.17)$$

$$\Phi_{\infty,t}^{\dagger}(x,\lambda) = (1-tx)\Phi_{\infty}^{\dagger}(\frac{1}{1-tx},\lambda) + t(1-tx)\Phi_{o}^{\dagger}(\frac{1}{1-tx},\lambda) \qquad (4.18)$$

<u>Proof:</u> The left hand sides of (4.17) and (4.18) are the unique solutions of (2.7) and (2.8) with m replaced by m_t , respectively. After scale transformations and some calculations it is seen that the right-hand sides of (4.17) and (4.18) satisfy these equations. This proves the lemma.

COROLLARY 4.5: We have

$$\frac{1}{\prod_{m_{t}}(\lambda)} = \lim_{x \uparrow r_{m}} \frac{\underline{\Phi}_{\infty,t}^{\uparrow}(x,\lambda)}{\underline{\Phi}_{0,t}^{\uparrow}(x,\lambda)} = \frac{1}{\prod_{m}(\lambda)} + t , \qquad \lambda \in K_{-}. \quad (4.19)$$

The proof follows immediately from (4.1), (4.17) and (4.18).

Now, compare (4.19) with (4.16). From Krein's inverse spectral theorem we get $m_t = q_s$ for $t = s - r_m^{-1}$. Thus Theorem 3.2 is proved.

As a consequence of (4.9), (4.10) we get the formula (2.15):

$$-\frac{1}{\prod_{m}(\lambda)} = \lambda \prod_{m} d(\lambda) = \lambda \int_{0-}^{\infty} \frac{d\tau_{\infty}^{(m^{U})}(\mu)}{\mu - \lambda}$$
$$= -\tau_{\infty}^{(m^{d})}(\{0\}) - \int_{0+}^{\infty} (\frac{1}{\mu} - \frac{1}{\mu - \lambda}) d\tau_{0}^{(m)}(\mu)$$
$$= -r_{m}^{-1} - \int_{0+}^{\infty} (\frac{1}{\mu} - \frac{1}{\mu - \lambda}) d\tau_{0}^{(m)}(d\mu) , \qquad \lambda \in K_{-}.$$
(4.20)

Note, that we have supposed m(0) = 0. If some $m(\{0\}) > 0$ is added to m at zero, the term $\lambda m(\{0\})$ is added on the right-hand side of (4.20).

The Corollary 3.3 follows immediately from the Theorem 3.2.

Proof of Theorem 3.4:

Let $S_a(m)$ be a string with $a \in (0, \infty)$ and $c_m = 0$. Put w := a and define $\widetilde{m}(x) := m(x-a)$, $x \in \mathbb{R}$. Obviously, it holds $c_{\widetilde{m}} = a$ and $r_{\widetilde{m}} = r_m + a$. If τ_a and $\widetilde{\tau}_o$ denote the spectral measures of $S_a(m)$ and $S_o(\widetilde{m})$, respectively, then we have by Proposition 2.3.(iii)

$$d\tau_{a}(\mu) = a^{2}d\tilde{\tau}_{0}(\mu) , \qquad \mu > 0$$

From (3.5) it follows

$$\int_{0+}^{\infty} \frac{d\tau_{a}(\mu)}{\mu} = a^{2} \int_{0+}^{\infty} \frac{d\tilde{\tau}_{o}(\mu)}{\mu} = a^{2} (a^{-1} - (r_{m}+a)^{-1}) = a(1 - \frac{a}{a+r_{m}}) ,$$

i.e. (3.6) and (3.7) hold.

Conversely, if $a \in (0, \infty)$ is fixed and \mathcal{T} is a measure on $(0, \infty)$ with $\mathcal{T}((0, \infty)) > 0$ and (3.7) then choose a number $u \in (0, \infty]$ with

$$\int_{0+}^{\infty} \frac{d\tau(\mu)}{\mu} = a(1 - \frac{a}{a+u}) .$$

Put

$$\mathfrak{C}(d\mu) := a^{-2} \mathcal{C}(d\mu) , \qquad \mu \in (0, \infty)$$

and choose the string $S_0(m)$ with m(0) = 0 and $l_m = \infty$ having \mathfrak{F} as its spectral measure (see Theorem 3.2.(iii)).

By the same theorem, for every $s \in [0, \infty)$ the string $S_0(m_s)$ with

$$m_{s}(x) := (1 - sx)^{2}m(\frac{x}{1 - sx}), \quad x \in [0, s^{-1}],$$

= ∞ $x > s^{-1}$

has the same spectral measure σ as S₀(m). It holds by (3.5)

$$c_{m_{s}}^{-1} = \int_{0+}^{\infty} \frac{d\mathcal{G}(\mu)}{\mu} + r_{m_{s}}^{-1} = \int_{0+}^{\infty} \frac{d\mathcal{G}(\mu)}{\mu} + s = a^{-1}(1 - \frac{a}{a+u}) + s$$

Now choose s in such a way that $c_m = a$ holds, i.e. put $s = \frac{1}{a + u}$.

By shifting m_s to the left

$$\widetilde{m}_{s}(x) := m_{s}(x + a)$$

we get a string $S_a(\widetilde{m}_s)$ with $c_{\widetilde{m}_s} = 0$ having \mathcal{T} as its spectral measure. The uniqueness follows from the uniqueness of $S_o(m)$ with $l_m = \infty$.

For the last part of Theorem 3.4.(ii) note that the strings $S_0(\frac{m'(\cdot -a')}{(a')^2})$ and $S_0(\frac{m(\cdot -a)}{a^2})$ have the common spectral measure τ

(see Proposition 2.3.(iii)).

From Theorem 3.2.(iii) it follows

$$S_{0}\left(\frac{\mathbf{m}'\left(\cdot-\mathbf{a}'\right)}{\left(\mathbf{a}'\right)^{2}}\right) = S_{0}\left(\left(\frac{\mathbf{m}\left(\cdot-\mathbf{a}\right)}{\mathbf{a}^{2}}\right)_{t}\right) \quad \text{with}$$
$$t = \frac{1}{r' - a'} - \frac{1}{r - a}$$

Proof of Proposition 3.5:

Choose a' $\in (0, \infty]$ and consider a string $S_{a}^{}, (m)$. Then it holds (see the definition of $r_{\lambda, a}(x, y)$)

$$r_{\lambda,a'}(0,0) = \frac{\Phi^{\downarrow}(0,\lambda)}{\frac{1}{a'} \Phi^{\downarrow}(0,\lambda) + 1} = \frac{1}{\frac{1}{a'} + \frac{1}{\Gamma_{m}(\lambda)}}$$
(4.21)

and, by definition of the spectral measure $\tau_{a'}^{(m)}$,

$$r_{\lambda,a}(0,0) = \int_{0}^{\infty} \frac{d\tau_{a'}^{(m)}(\mu)}{\mu - \lambda}$$
 (4.22)

Now let be $a \in (0, \infty)$. Then (3.8) is a consequence of

$$-\frac{1}{\Gamma_{m}(\lambda)} \frac{1}{\frac{1}{a} + \frac{1}{\Gamma_{m}(\lambda)}} (a + \Gamma_{m}(\lambda)) = -a , \qquad (4.23)$$

(2.15), (4.21), (4.22) for a' = a and a' = ∞ . Letting a $\downarrow 0$ in (4.23) divided by a we get Knight's formula.

References

- [1] Dym, H.; McKean, H.P., Gaussian processes, function-theory and the inverse spectral theorem, New York, Academic Press (1976).
- [2] Ito, K.; McKean, H.P., Diffusion Processes and their Sample Paths, 2nd Printing, Springer, Berlin (1974).
- [3] Kac, I.S.; Krein, M.G., On the spectral functions of the string, Amer. Math. Soc. Transl., (2) 103 (1974), 19-102.
- [4] Karlin, S.; McGregor, J., The differential equations of the birth- and death processes and the Stieltjes moment problem, Trans. Amer. Math. Soc. 85(1957), 489-546.
- [5] Knight, F.B., Characterization of the Lévy measures of inverse local times of gap diffusion, Progress in Prob. Statist. 1, Birkhäuser, Boston, Mass. 1981.
- [6] Kotani, S.; Watanabe, S., Krein's spectral theory of strings and generalized diffusion processes, Lecture Notes of Mathematics Vol. 923, (1981), 235-259.
- [7] Küchler, U., Some Asymptotic Properties of the Transition Densities of One-Dimensional Quasidiffusion, Publ. RIMS, Kyoto-University, 16(1980), 245-268.
- [8] Küchler, U., On sojourn times, excursions and spectral measures connected with quasidiffusions, J. Math. Kyoto University, 26(1986), 403-421.
- [9] Küchler, U.; Salminen, P., On spectral measures of strings and excursions of quasidiffusions, Lecture Notes of Mathematics Vol. 1372, (1989), 490-502.
- [10] Neumann, K., Asymptotische Eigenschaften von Quasidiffusionen und eine Verallgemeinerung des Kreinschen Spektralsatzes, Dissertation A, Humboldt-Universität Berlin, 1989.