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Notes on the Wiener Semigroup and Renormalization*

J.A. YAN

Institute of Applied Mathematics, Academia Sinica

P.O.Boz 2T8,~, Beijing 100080, China

, 
Abstract. In this paper, by using white noise analysis (e.g. Wick product, scaling

trasformation) we obtain some results about the oo-dim. Wiener semigroup. A

precise definition of renormalization in white noise analysis is also proposed. The

main results are Theorems 2.2, 2.4, 2.5, and 3.2.

1. Introduction and Preliminaries

In this paper we consider the following Gel’fand triple

S ~ ,C2) - ~) ~ (S

where is the white noise measure on the Schwartz space of tempered distributions.

Let A denote the self-adjoint operator -d-~ + I + t2 in For each p > 0 we put

Sp(lR) = Dom(AP) and (S)p = Dom(r(Ap)), where f’(Ap) stands for the second quanti-
zation of AP. We denote by (resp. (S_p)) the dual of Sp(lR) (resp. (Sp)). Let

Sp(IRn) denote the subspace of all symmetric functions (or distributions) in The
~ 

norm ) - ~2,p of defined by

~ 2

where 1.12 is the norm of L2(IR"). Each element ø of (S)p corresponds uniquely to a

sequence E verifying

oo

- ~ ~ 00

n=0

where ~~ ~ ~~2,p denotes the norm of (S)p. We write ~ ~ ( f ~n~ for this correspondance..We
have
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. = 

(S) = (S)* = 

The elements of (S) (resp. (?*)) are called Hida test functionals (resp. Hida distributions). .
Now we recall some basic notions and facts in white noise analysis, we denote by  ’,’ >

(resp. ~ ~, ~ ») the dual pairing between S-p(Rn) and Sp(lRn) (resp. between (S)-p and

(S)p), p running over IR+. Let 03C6 E (S)P, 03C6 E (S)-p with 03C6 ~ (F(n)), 03C8~ (G(n)). Then
00

~ ~, ~ >= E n!  F~n), G{n) > . . (1.1)
n=0 

’

Let ~’ E S (lR). Put

E(~) = eXP~ ’~ ~ > -1 2 ~~~2}~ (1.2)

Then E(~) E (S). Thus for each ~ E (S)* we can put

S~(~) _~ ~, E (~) », ~’ E S (IR) (1.3)

We call S03C6 the S-transform of 03C6. Let (S)*. Assume that 03C6 ~ (F(n)) and 03C8 N (G(n)).
Put

k+j=n

Then (H(n») corresponds to an element of (S)*, which is denoted by ~ : ~ and called the
Wick product of ~ and ~. We have

: ~G) = S~ ~ S~ (1.4)

It is shown in Meyer-Yan [5] that we have

1.5 .

This inequality will play an important role in the sequel.

Let 03C6 E (S). It is shown in Kubo-Yokoi [1] that 03C6 admets a continuous version ø of 03C6
(see also Lee [4] and Yan [8]).

Let A E 1R and y E It is proved in Potthoff-Yan[6] that the following mappings
are continuous from (S) into itself: 

~~~) (~) _ ~(~’~~ ra~~(’) _ ~(~ + y~~ ~(~) = r(~~~ (1.6)

where is the second quantization of the multiplication by A. Namely, if ~ ~ (F~n))
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then r(~,~ ^r (~nF(n~). Moreover, r(~) is a continuous mapping from (S)* into itself and
we have

~03C6(03BB)~2,p ~ ~03C6~2,p+log, ~03C6~2,p+log2(|03BB|V1) (1.7)

because for any a > 0 we have

~ 2-anIF(n) (1.8)

Let x E S’(lR). The sequence corresponds to a Hida distribution, whose S-

transform is exp  x, 03BE >, 03BE E S (1R). We denote it by ~ (x). It is easy to see that

= exp 1 z~2 ’ ~ ( 1.9

It is shown in Potthoff-Yan [6] that for ¢ E (S), F E (S)* and x E S’(IR) we have

« F »_« ~, : F » 

Let x E S’(1R). The evaluation mapping at x is a Hida distribution, denoted by b~,
whose S-transform is

Sb~(~) = exp{ > - I ~~~2}, ~ I E S (lR) ~ ( 1.II 
,

It is shown in Yan ~7~ that if p > 2 and x E S-p(lR) then b~ E ( S ) _~,. By ( 1.11) we have

~z = E (z) : ~o (1.12)

Let .1 E Put .

~(a) (E) = E ~ (S’(IR)).

It is shown in Potthoff-Yan [6] that the " generalized R - N derivative d (03BB) d  can be regarded
as a Hida distribution, whose S-transform is

d~(a) 1

~ (~~ - exp{"Z (~ - (1.13)

That means ~ corresponds to the following sequence (F(n)):

F(2k) = (03BB2-1)k 2kk!T~kr, F(2k+1) = 0 (1.14)
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where Tr is the trace operator which is an element of S-p(IR2) for any p > 4, and we have
oo

= ~ (2n)"4p (1.15)~ ~ 

If ~2 ~ 1 and Px be the number such that !~2 - = 1, then d‘‘~~~ E (S_p for
.

Let X be a vector space. We denote by CX the complexification of X. If X is a Hilbert

space with the norm (~ ~ jj, then the norm of CX is defined by

~x+iy~2 = ~x~2 + ~y~2. (1.16)

Let p > Z. It is shown in Lee [4] that each ~ E (S)p admets an analytic extension ~ on
CS-p(lR) and we have

~ ~, ax »_ 1(z), z E (1.17)

where 6z is a complex Hida distribution whose S-transform is

S03B4z(03BE) = exp{ z, 03BE > - 1 2|03BE|22}, 03BE ~ S (IR)

(see also Yan [8]). Recall that ~A-p~2H.S. = 03A3~n=1(2n)-2p  ~ for p > ?, so we have
=1. The restriction of ~ to is a continuous version of ~. a

The main purpose of this paper is to study the oo-dim.Wiener semi group by using white

noise analysis and give a precise definition of renormalizations in white noise analysis.

2. The ~-Dimensional Wiener Semigroup and White Noise Analysis

In this section we shall study the co-dim.Wiener semigroup by using white noise anal-

ysis. This investigation was initiated in a joint work with H.H.Kuo and J.Potthoff (see
(31).

We begin with introducing some operators acting on (S). .
Definition 2.1 Let A E For each ø E (S) we put .

Ra~ _ (~(~))~~’)~ (~(~‘~)(z) (2.1)

Then Rx and R~ 1 are continuous mappings from (S) into itself.
Lemma 2.1 Let ø E (S) and F E (S)k. . Then for any A E we have

~ ~), F ~~=~: ~, F(~ : ~> (2.2)
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Proof. If J~ ~ (~) then by using S-transform we can obtain

~-~ ~

from which it follows (2.2) for F ~ (?). If F 6 (~)", , by taking a sequence of elements

of (?) such that J~ -~ F in (~)*, we get (2.2) by using (1.5).

Theorem 2.1 Let p > ~ and A ~ 0 be such that ~1 - A~j~~.-p  1- ~ ~n~ ~~
can be extended to a continuous mapping from (~)p~i to (~)p. Moreover, we have the

following estimates and equalities:

 ~(p~)~t!2.p+~ !~~ft2.p  c(p,A)!~)t~~ (2.4)

R03BB03C6,F = 03C6,F:(d (1 03BB)d )(03BB) 
, (2.5)

R-103BB03C6, F = 03C6, F : d (03BB) (2.6)
~

where ~~(~~ 
Proof. and F ~ (?)" we obtain (2.5) and (2.6) from (2.2). By using (1.5) we

get (2.5) and (2.6) for 03C6 ~ (S)p+1 2 and F ~ (S)-p. Since

d (03BB) d  ~ ((03BB2-1)k k!2kT~kr) (d (1 03BB)d )(03BB) ~ ((1-03BB2)k k!2kT~kr)
we have

~d (03BB) d ~22,-p = ~(d (1 03BB) d )(03BB)~22,-p = 03A3 (2k)!(|1-03BB2||Tr|2,-p)2k (k!2k)2  ~ (2.7)

By (2.5), (2.6), (1.5) and (2.7) we obtain

| R03BB03C6,F  | ~ ~03C6~2,p+1 2~F~2,-p~d (03BB) d ~2,-p

| R-103BB03C6, F  | ~ ~03C6~2,p+1 2~F~2,-p~d (03BB) d ~2,-p

from which it follows (2.4).
Let 03C6 ~ (S). We put

Pt03C6(x) = S’(IR)03C6(x +ty) (dy) (2.8)

and call (Pt,t ~ 0) the Wiener semigroup. Let x,t denote the gaussian measure on S’(IR)

with mean value a: and variance parameter f. Then we have

Pt03C6(x) = S’(IR)03C6 x,t(dy) (2.9)
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Thus the generalized derivative d:; f can be regarded as a Hida distribution and its S-
transform is given by

t (~)( )

= x~ ~ > -2 1 (1 ’ t) 
That means

d x,t d  = ~(x):d (t) d  (2.10)

Theorem 2.2 Let ~ E ( S ) . We have

Pt03C6 = R-11+i03C6 (2.11)

Pt~=~ ~_t~, 0_t 1 (2.12)

In particular, Pt is a continuous mapping from (S) into itself.

Proof. By (2.9) and (2.10) we have

Pt03C6(x)=03C6, ~(x); d (t) d  

= 03C6,03B4x : d (2) d  : d (t) d  = 03C6,03B4x : d (2) d  : d (t) d  
_« ~~ ~~ : - ~ (2.13)

Thus, from (2.6) and (2.13) we get

’ 

_~ ~= 

If 0  t  1, then by (2.13) and (2.5) we obtain

. 

_~ P 1_t~~ ~s ~= R 1_t~(2)~ ,

because we have 
__

;_t ) 
~ dp ~~~) °

The theorem is proved.

As an application of (2.12) we obtain the following well known result.

Corollary. Let ø E (S). Put
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_ + 1- (2.14)

Then we have

Qt03C6 = e-tN03C6 = (2.15)

where N is the number operator. (Qt) is called the Ornstein - Uhlenbeck semigroup.
Proof. By (2.14) and (2.12) we have

Qt03C6 =(P1-e-2t03C6)(e-t) = (Re-t03C6)(e-t) = (03C6)(e-t)
- 

Theorem 2.3 Let a > 1 4 be such that |Tr|2,-03B1  1 t. Then Pt can be extended to a
continuous mapping from to (S)o and we have

 (2.16)

Moreover, for; E (S)a+~ and F E (S)_a, we have

. ~ F »=c ~, F r » (2.17)

Proof. (2.I?) follows from (2.1I) and (2.6). From (2.17) we get (2.I6).

Theorem 2.4 Let 03B1 > 1 4 and 03C6 ~ (S)03B1+1 2. Then the following limit exists in (S)03B1:

(2.18)

and for F E (S)_a we have

c~~,F~= I 2 ~~,F;12 (Tr) >> (2.19)

where 12(Tr) is a Hida distribution whose S-transform is = 

If a > 2 then we have 
’

039403C6(x)=lim Pt03C6(x) - 03C6(x) t
, x ~ S-03B1(IR) (2.20)

039403C6(x) = -Nx03C6(0), x ~ S-03B1(IR) (2.21)

Proof. We have

lim ~1 t(d (1+t) d - 1) - 1 2I2 (Tr)~22,-03B1
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= lim (2k)!t2(k-1) (k!2k)2[Tr |2k2,-03B1 = 0,

from which and (1.5) we see that the limit in (2.18) exists in (S)03B1 and (2.19) holds. Moreover,
for z E S_a (lR), by (2.18) and (1.17) we have

039403C6(x)= 039403C6, 03B4x = lim 1 t  Pt03C6 - 03C6, 03B4x »

from which we get (2.20). Finally, by using (1.5) we can extend (1.10) to the case where

~ E (S~a+3 and z E S-a (lR), F E S-a. Namely, there exists a unique element of (S)a,
denoted by such that (1.10) holds for any F E (S~_a. . Consequently, for z E 
we have

0~ z =~ ~~, ~~ ~= 1 ~ ~, 6z : IZ Tr~ »~~ fl ~~ 2 ~’ i ( ~

- 1~~,Sz »

- -~~,5(z~:NSo»

»

- - ~ ~_ 

Here we have used the fact that if 03C8 ~ (S)p then for any ~ > 0 we have N03C8 ~ (S)p-~. The
theorem is proved.

Example. Let ~ E S (IR). We have

=1~2~~

In the Iiterature, the operator 24Y is often called the Gross Laplacian. The following

theorem gives us a good domain of ~.

Theorem 2.5. Let D = ~p>1 4(S)p. We define the inductive Emit topology on D.
Then 4Y can be extended to a continuous mapping from/) into itself.

Proof. Let p > 4 and F E (S)_p. Assume that F ~ ( f (n}. . Then we have F 12(Tr) N

(g(n) ), where
= = Q, g~n~ = n > 2

Therefore, for any E > 0 if we put
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C(p,~) = sup(n + 2)(n +1)2-2~n|Tr|22,-(p+~)
then we have (noting that |f(n) |2,-(p+~) ~ 2-~n |f(n) |2,-p)

0o

~F : I2(Tr)~22,-(p+~) = 03A3 n!|g(n)|22,-(p+~)
n=0

00

~ 03A3 (n + 2)!|f(n) |22,-(p+~) |Tr|22,-(p+~)
n=0

00

~ E) ~ I2,-p = ~) (2.22)
. n=0

We conclude the theorem by (2.19) and (2.22).

Remark 1. Let D = (S)p. We denote by 8t the Hida derivative (i.e. at = ’

see Potthoff-Yan [6]). It is shown in Yan [7] that at is a continuous mapping form D into

itself and we have for ¢ E D and 03C8 E S

« »_~ ~~ ~ » . (2.23)

Since Tr = ~-~ 03B4t ® 03B4t dt, it follows from (2.23) and (2.19) that for ø E D we have

a~ =1 2 _ o 
This formula is due to Kuo ~2~.

Remark 2. Let p > 4 and ~ E (S)p with ø - ( f (n)). It is easy to prove that

~~ ~ with

(ri + 2~ 2 (ri -f-1~ f (n+2) 
where f ("+2~®2Tr is. an element of verifying

 f (n+2, ®2Tr~ >= f .("+2) >, E 

Let z be a complex number. We denote formally by a complex Hida distribution
whose S-transform is 

Sd (z) d (03BE) = exp{-1-z2 2 |03BE|22}.

If p > 1 4 is such that |Tr|2,-p  1 |1-z2|, then d (z) d  ~ C(S)-p.
The following theorem extends the Wiener semigroup (Pt) to a group

’
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Theorem 2.6 Let 03C6 E C ( S ) and z E C We denote by Pz 03C6 the unique element of C ( S )
such that for each F E C ( S ) #

« Pz03C6, F »=« ¢, F : d (1+z) d  » (2.24)

Then (Pz, z E is a group acting on C(S) which extends the Wiener semigroup (Pt, t E

lR+). Moreover, for each z E S’(IR) we have

... =~ ~, f(~) : (2.25)_« ~, ~ (z) : » (2.25)

If p > i is such that  then Px can be extanded to a continuous mapping

from to 

Proof. By (1.5) we can prove the existence of verifying (2.24). The group property
of (Pz) follows from the following trivial fact:

d (1+z1) d  : d (1+z2) d  = d (1+z1+z2) d  (2.26)

By (2.24) and (1.17) we have

,.... 

Pr03C6(x)=Pz03C6,03B4x= 03C6, 03B4x :  d

= 03C6,~(x):03B40:d (1+z) d
_~ ~~ C (2) : 

d 
>

(2.25) is proved. The last conclusion of the theorem is obvious.

Remark. If ø E (~), we can prove that P ~(x) = ~(2 + But for a

general ø E (S)p the integral may not exist.

3. Renormalization in White Noise Analysis

Let x E CS’(IR). . The Wick-transform : : of the tensor product ~®" is given by

: 2®n :_ I, 3~ -1 k k. I ( n _ 2k) ! .2 Ik 2®n-2k®T r ®k 3.1
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where  stands for the symmetric tensor product. We have

x~n
= 03A3

nl k!(n-2k)!2k : x~n-2k:T~kr (3.2)

It is shown in Yan [8] that we have also the following formulas

: 2®n :- / S’(llt) (2 + (3.3)

2®n = : (x + (3.4)

If p > 2 and 03C6 E (S)p with 03C6 N (F(n)), then we have
00

~(z) _ ~ : z®n :, F~") >, z E CS_n(IR) (3.5~
n=0

where the series is convergent absolutely and uniformly on bounded subsets of S_p(1R) (see
Lee (4~ and Yan ~8~).

Let .1 E lR. The following formula was established in Potthoff-Yan [6]

: (03BBx)~n := 03BBn03A3 (1- 03BB-2)k n! k!(n-2k)!2k : x~n-2k ; T~kr (3.6)

Thus, by (3.6) we obtain

: (2x)~n := 03A3 n! k!(n-2k)!2k (2)n-2k : x~n-2k : T~kr (3.7)

Let f Put

~(Z) _: .~ f >, - f >

Then by (3.7) and (3.2) we have

03C6(2) = 03C8(2)
or equivalently,

~ _ {~(,~ ) )(~’’ = 
Thus, we can call R f the renormalization operator, because it transforms a Stratono-

vich multiple integral into a Wiener multiple integral. In the sequel we denote simply by R

(resp. ~-1) the operator R f (resp. R~).
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As a particular case of Theorem 2.1 we have the following result.

Theorem 3.1 Let p > 4 be such tht  1. R and R-1 can be extended to a

continuous mapping from to (S)p and we have

II’~ 1~II2~P ~ 3.s

R03C6, F = 03C6, F : 03B40 (3.9)

R-103C6, F = 03C6, F : d (2) d  (3.10)

Where 4 E and F E ( S ~ _p.

Corollary. Let p > Z and § E We have

~ (z~ _« R~, E (z) », z E (3.I1~

In particular, the restriction of ~ to S is the S-transform of R~.

The following theorem gives us integral representations of and 

Theorem 3.2 Let p > 2 and § E We have

_ / ~(z + z E (3.12)

R-103C6(z)= S’(IR)03C6(z+y) (dy), z ~ C S-p(IR) (3.13)

Proof. Assume 03C6 ~ (F(n)) and (G(n)). By (1.17) we have
o

= ~ : :, >, z E CS_p(IR) (3.14)
n=o

_
R~(z) = ~ : z®n :, >, z E (3.15)

n=0

On the other hand, for z E CS_p(IR) we have
oo oo

~ ~ I  >  ~ (Z,P

= 03A31 n!|z|n2,-p(n!|G(n)|2,p)

~ exp 
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Thus, if we put
DO

F(z) _ Z~  >, z E (3.16)
n=0

then F is analytic on C S-p (lR) and by (3.16) and (3.11) we have

~’(~) = SR~(~) _ ~(~)~ ~ E s(~)

from which it follows

DO

~(z) = E  >, z E CS_p(1R) (3.17)
n=0

Now by (3.15), (3.17) and (3.3) we get (3.12). Similary, we can prove that
00

R _ 1~(z) _ E  >, z E (3.18)
n=o

Therefore, we can get (3.13) from (3.17), (3.18) and (3.4).

Remark. Let p > ~ and ø E Assume that ø N (F~n) ) and R~ ~ (G~n~ ).
By (3.17) ~ has the following " Stratonovich" decomposition

DO

~(2) _ E  >, 2 E S-p(IR).
n=0

Renormalizing ~ consists in transforming chaos by chaos Stratonovich multiple integrals
into Wiener multiple integrals. We obtain the Ito-Wiener decomposition of R~:

DO

R~(2) _ E : x®n :, >, x E 
n=0

The following. theorem improves Theorem 3.1.

Theorem 3.3 Let po be teh number such that =1. Let p > po and ~B > 0 be
such that 2’Z~ + 2-2~P-Po)  1. The operators Rand R’1 can be extended to continuous

mappings from (S)p to (S)p-03B2. Moreover, for 03C6 ~ (S)p and F ~ (S)-p+03B2 we have

R03C6, F = 03C6, F : 03B40 , R-103C6, F = 03C6, F : d (2) d  
(3.19)
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Proof. Let a > 0, be such that 2’2~ + 2‘2« = 1. Then p - a > po, so we have

Ca =  oo (see Yan [7]). Let F, G E (S)*. By Yan 171 we
have

(3.20)

Let ~ E (S). By (3.20), (3.9) and (3.10) we obtain

I : R~, ~ » ~  

) : 7!-~, F ~ )~ ,

Thus we conclude the theorem and we have

~R03C6~2,p-03B2 ~ c03B1~03C6~2,p, ~R-103C6~2,p-03B2 ~ ~c03B1~03C6~2,p.

Remark. Let po be as above and ~ E (S)p, where p > po. Since for each ~ E S(IR) we

have 03B4~ = ~(03BE) : 03B40 E (?)-p(by (3.19)), we can put

~(~) =c ~, af », ~ E s(~).

~ is a continuous function on S(IR). We call ~ the restriction of ~ on By (3.9), we
have

Thus, ~ is completely determined by its restriction it.
Recall that if a Hida distribution ~ corresponds to a sequence (F~"1), we can write

formally
00

~ _ E : ~®" :, F(n) > . .
n=0

Suggested by the above remark, we propose the following general definition of the renor-

m aliz ation.

Definition 3.1 Let ø E (S)* with ~ N (F~"~). If ~ is a formally defined functional on

S’ (1R) and if ~ admets the following formal expansion:
oo

~G(z) = ~  z®~, >

n=0
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then we say that is renormalizable and ~ is its renormalization. We denote ø also by J~~.
We give below some examples.

Example 1. Let 03C8(x) = exp  x, y >, where y ~ S’(IR). We have formally

03C8=03A3x,y>n n! = 03A3  x~n, y~n n! >.
n=0 

n~ 
n=0 

ri.

Therefore, we get

R03C8 = 03A3 : x~n : y~n n! >= ~(y).

Example 2. Let ~(x~ = exp c f ~ where c r 0 is a constant. Then we have

03C8(x) = exp{c  x~2,Tr >} = 03A3 cn  x~2,Tr >n n!

=03A3 x~2n,cnT~nr > n!
n=0 

1~,.

Therefore, we obtain
- ~ enT@n

R,h = ~ : :, ) .

If c > 0, then

R03C8=03A3 :x~2n:,(2c)2nT~nr 2nn! >=0393(2c)d (2) d

If c  0, then

R03C8 = 03A3 : x~2n :, (-2c)2n(-1)nT~nr 2nn! > ==0393(-2c)03B40

In each case, we have

Example 3 Let = exp c fo x(s)ds. Then we have
oo 

~n o 

=  ~’ >n= ~,  (~’t, >
n=O 

ri.

Thus we get
00 

= ~ : 2®" :, >

n=0 
n.
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whose S-transform is

S(R03C8)(03BE) = 03A3  03BE~n,cnI~n[0,t] >= exp c t 03BE(s)ds.
n= 0 

’ 

0

Finally, we leave the reader to verify the following identities:

R(~~) = ~~~~‘~ _ (~~)(a~.

where ~ and ~ are supposed to be renormalizable.
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