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A complete differential formalism

for stochastic calculus in manifolds

J.R. Norris

Statistical Laboratory, University of Cambridge
16 Mill Lane, Cambridge CB2 1SB, England, UK

This essay will contain no surprises for the experienced practitioner of stochastic

calculus in manifolds, but may be found useful by others wishing to do certain calculations,

relating say to Brownian motion on a Riemannian manifold. We take the view that

the stochastic calculus has two main roles - to construct new processes from old and

to determine martingales. The formalism of Ito and Stratonovich differentials for real-
valued processes provides a flexible, complete and highly effective way to handle these

two roles. We know of no account of a similarly effective formalism for processes taking
their values in a differentiable manifold. But certainly everything we do below, based as
it is on the notion of a horizontal lift, is at least implicit in the quite large literature on
stochastic calculus in manifolds. One of our main contentions is that, in dealing with

processes in manifolds, one cannot and should not try to avoid differentials of processes in
vector bundles. For example, if one wants to form a line integral along a semimartingale
in a manifold, the natural integrand is a process in the cotangent space and one knows
from the real case that the difference between Stratonovich and Ito integrals involves the
differential of the integrand. Such differentials may be handled effectively by horizontal

lift, but we have made it a principle to make the horizontal lift disappear from our formulae
whenever possible. This is done by using covariant stochastic differentials. Our second
main contention is that, once these covariant differentials are introduced, the formalism
becomes as flexible and as complete as the real-valued case.

We begin by reviewing the basic elements of stochastic calculus in R, to fix no-
tation and make it clear what we are extending to manifolds. Then we show how the
notions of semimartingale and Stratonovich differential extend to manifolds. Next we

consider a vector bundle with connection and the associated notions of horizontal lift of

a semimartingale and parallel translation. Section 4 specializes to the case where a con-
nection is given on the tangent bundle of our manifold: this permits the definition of Ito

differentials, we introduce a Doob-Meyer decomposition and show it transforms under a

change of measure by the familiar Girsanov formula. So far, everything is well known and
is covered in greater depth in Emery’s book [Em] ; in particular we refer to [Em] for the
existence of the stochastic development.
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Beginning in Section 5, we introduce notions of covariant stochastic differential for

semimartingales in a vector bundle with connection. These notions may also be found

in Elworthy’s book [El]. The calculus of these differentials, which Elworthy does not

pursue, is remarkably simple, perhaps trivial, but consequently easy to use and illuminat-

ing in applications. The fundamental Stratonovich to Ito conversion formulae are given
in Section 6. In Section 7 we discuss covariant stochastic differential equations over a

given semimartingale in a manifold. These equations arise naturally when one consid-
ers smooth variations of the base semimartingale in a parameter, as for example in the

study of stochastic flows or the Malliavin calculus. Also, changes of connection are seen
to correspond to a particular class of linear covariant equations, and this leads to sim-

ple formulae relating parallel translation and covariant differentials corresponding to two
different connections.

The final three sections present applications of the differential formalism. In Section
8 we derive a generalized Feynman-Kac formula for heat semigroups on sections of a
vector bundle. The fact that we can work with general connections allows a unification
of previous results: in particular we include the Cameron-Martin formula. The ability to
switch connections readily in the differential formalism is exploited in a technical lemma.
This application is pursued in [N]. In Sections 9 and 10 we give simple ‘stochastic calculus’
proofs of some known results on the effect of mappings on martingales and on Brownian

motion, including a factorization result of Elworthy and Kendall.

1. Review of stochastic calculus in R

We work on a probability space (S~, 0, P) equipped with a filtration sat-

isfying the usual conditions. We shall consider only continuous semimartingales, which
from now on are called simply semimartingales, continuity being understood. The same

goes for martingales and processes of finite variation.

Let zi be a semimartingale, yt a continuous adapted process and let 7, T be random
times with 7  T. Then, as ~V 2014~ oo,

The convergence is in probability, in particular a subsequence converges almost surely. The
limit is the Ito integral. The natural class of integrands for the Ito integral is in fact larger,
including all locally bounded previsible process, but the Riemann sum approximation fails
in general. Let

zt = z0 + t0ysdxs,
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then ~ is itself a semimartingale. We write

dzt = 

Every semimartingale zt has a unique Doob-Meyer decomposition

Zt = Zo + ~~ + ~? ,

where xmt is a local martingale starting from 0, and xft is a process of (locally) finite varia-
tion starting from 0. It is sometimes convenient to write the decomposition in differential
notation

. dzt =~+~.
The Ito integral respects the Doob-Meyer decomposition: ~ has decomposition

dzi = + 

This is the principal merit of the Ito integral.

Suppose now that ~ is a semimartingale; then

S~(’~)~(~))(’(~)-.(~))~f~.
This limit is the Stratonovich integral. Also

(y (k 2N)-y (k+1 2N)) (x (k+1) 2N)-x (k 2N)) ~ 03C3 ~xs~ys.
We call this limit the quadratic integral. Clearly

03C3 ys~xs = 03C3 ysdxs + 03C3 ~xs~ys.
If either xt or yt are of finite variation, then, by the Cauchy-Schwarz inequality, the
quadratic integral vanishes and the Ito and Stratonovich integrals agree. In general the
process

. 

qt == / 
is of finite variation. We write

~ = .

Equivalently

dqt = dxtdyt.
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For semimartingales x t, xt and previsible processes yt, yt it is true that

= (2)

The Doob-Meyer decomposition changes under an absolutely continuous change
of probability measure according to the Girsanov formula. Suppose that P is absolutely
continuous with respect to P on every Ft with continuous density martingale pt. Then,
in an obvious notation,

= - 

~xt~03C1t 
. 3~ ~ 

Pt 
°

A process xt in Rn is a semimartingale if all its components are semimartingales.
For a function on Rn we have the chain rule

= 

that is to say, for all random times u and T with u  T,

f(x) = f(xs) + 
03C3 ~f ~xi(xs)~xis.

This is the principal merit of the Stratonovich integral.

We often use stochastic differential equations to define and analyse semimartin-

gales. Given a semimartingale Xt we may consider the Stratonovich equation

8Yt = V(Yt)8xt.

If V is smooth, then given a stopping time u and an .~’~-measurable initial value there

is a unique solution up to explosion. That is to say there is a stopping time ( > r and a

semimartingale (yt : ~  t  () such that, for all stopping times T with u  T  (,

y - y03C3 = 03C403C3 V(ys)~xs,
and, as t i (, yt leaves all compact sets. If V is linear then ( = 00 almost surely. If we

write yt = ( = to indicate the dependence on the starting time and place,
then, for cr ~ T  t  we have almost surely

_ 

= (~)

All this carries over to the I~o equation

dyt = 

and this equation has the additional property that, if V has bounded derivative, then

( = oo almost surely.
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2. Stochastic calculus in a differentiable manifold: semimartingales and Strat-

onovich differentials

The notions of semimartingale and Stratonovich differential in R" are invariant

under diffeomorphism, so they extend to a differentiable manifold.

Let xt be a semimartingale in Rn and let f be a function on Rn; then f (xt ) is again
a semimartingale and the chain rule applies

a(f (xt)) = 

Let M be a (metrizable) differentiable manifold and let zi be a process with values in
M. We say that zi is a semimartingale if f (xt) is a semimartingale in R for all smooth
real-valued functions f on M.

The chain rule shows that the Stratonovich differential transforms under a change of
coordinates as a tangent vector. This suggests that we define the Stratonovich differential
of a semimartingale Xt in M by

(axt )‘ = a(xt ~~ (5)

where x = (x1,..., xn) is any chart around xt. From this symbolic definition we deduce the
definitions of bona fide mathematical objects - the Stratonovich and quadratic integrals.
Let at be a semimartingale in T*M over xt, that is, such that 7rat = zi. Let (3t be a

previsible process in T*M Q9 T*M over zi . Fix a countable atlas of coordinate charts for

M, with domains Di, D2, .... There is a sequence of random times

0 = 0  1  ...  Tk ~ 00

such that, for all k and w, there is an f such that xt(w) E D~ whilst Tk(úJ)  t  Tk+1(w).
For random times 0’ and T with Tk ~ 7  T  we define the Stratonovich and

quadratic integrals by

03C3 03B1s(~xs) = 03C3 (03B1s)i~(xis),

03C3 03B2s(~xs,~xs) = 03C3 (03B2s)ij~(xis)~(xjs),

where coordinates are taken in the chart on Di for any suitable £, it makes no difference
which. The obvious extensions of these integrals to general 7 and T do not depend on the
sequence of random times, nor the atlas used.

The discrete approximations to the Stratonovich and quadratic integrals on R give
us discrete approximations, converging in probability, to the integrals on M. This is useful
for simulation. It shows also that ( fs depends only on : ~(w)  s 
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T(w)) and similarly for the quadratic integral. It shows moreover, because of the time

symmetry of the discrete approximations, that if at happens to be a semimartingale in
some reverse-time filtration then the reverse-time integral is the same as the original.

The above argument with random times Tk shows also that the following local
differential formulae do correspond to identities between stochastic integrals. Firstly there
is a natural extension of (2):

_ _ _ (6)

Secondly, the chain rule extends to semimartingales in M:

- a~~ af ( x t) a ( x= t) = . (7)

We can consider stochastic differential equations on manifolds. Suppose given a
semimartingale xt in M and a smooth section V of the bundle T N 0 T*M over N x M,
where N is another manifold. Then a semimartingale yt in N is a solution of the stochastic
differential equation

ayt = V(yt xt)8xt (8)

if, for all 1-forms a on N, we have

a(ayt) _ (a o Y)(yts xt)axt.

It is an obvious guess that, given any starting point yo E N, there is a unique solution to
(8) up to explosion. Given global charts for M and N, this is immediate from the result
in Rn. It is also true in general: see Emery [Em].

3. Horizontal lift of a semimartingale to a principal fibre bundle, parallel
translation

Let F be a vector bundle over M with fibres isomorphic to a finite-dimensional
vector space E. Let U be the principal bundle GL(E, F) and let V be a connection on F.

Let zi be a semimartingale in M. We will show that, for each initial frame
uo e U over xo, there is a unique semimartingale u~ in U over xt such that, for all smooth
sections f of F

8(ut 1 f (xt)) = (9)
The semimartingale Ut is called the horizontal lift of ~t starting from uo.

Fix a countable atlas of local trivializations of U. There is a sequence of stopping
times

0 = 0  1  ...  Tk ~ oo
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such that, for all k, zi remains within the domain of one trivialization between Tk and
Condition on whatever trivialization this may be. Suppose we are given a stopping

time cr with  Tk+1 and some ~’~-measurable My E U over In the trivialization,
V = D + A for some A E r(End E ® T*M), so letting f run through a basis for E in (9)
we obtain a linear equation in End E

~(u-1t) = u-1t A(~xt).

Equivalently

a(ut) = -A(axt)ut. (11)

This equation has a unique solution starting from My at time u, which remains in GL(E)
up to time Moving out of the trivialization we have shown there is a unique semi-
martingale Ut in GL(E, F) starting at uo at time ~, satisfying (9) up to Tk+1. Now piece
together a solution to (9) for all time in the obvious way, using (4) to check that this
depends neither on the atlas nor on the stopping times Tk.

If we write uts(us) for the solution of (9) starting from us at time s (as in (4)),
then by linearity of equation ( 11 )

Tts s

does not depend on Us. For t  s we set Tts = . The map ts : Fxs ~ Fxt is called

parallel translation.

Once we have a linear isomorphism u : E - F, we get isomorphisms E* - F*,
End E -~ End F in an obvious way. We denote these all by u; thus for V E End F we
have the possible confusion u-l V = u-lVu: on the left u~l acts as an isomorphism to
End E, the right side is a composition of linear maps.

4. Stochastic calculus in a manifold with connection, stochastic development,
Ito differentials, Doob-Meyer decomposition and Girsanov formula

Let M be a manifold with connection V, then we can apply the preceding to the
principal bundle GL(M) of linear frames in TM. Let zt be a semimartingale in M and
let Ut be its horizontal lift in GL(M) starting from uo. We can define a semimartingale
in Rn by the equation

~xt = u-1t~xt. (12)
Then zi satisfies

~xt = ut~xt. (13)
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Conversely, suppose we are given a semimartingale xt in We admit the following
well-known result (see ~Em~, Theorem 8.30): for each initial f rame uo E GL(M) there is a

unique semimartingale ut in GL(M) defined up to explosion time ( which is the horizontal

lif t of a semimartingale zi, t  (, satisfying (13). We call xt the stochastic development
of xt starting from xa.

Define the Ito differential of xt by

dzt = . 

, (14)

This definition is, like (5), symbolic. From (14) we deduce the definition of the Ito integral:
for a locally bounded previsible process at in T *M over xt define

03C3 03B1s(dxs) = 03C3 03B1s(usdxs). (15)

The Doob-Meyer decomposition extends to semimartingales in M, but only at the
level of differentials, not at the level of processes. Suppose x~ has Doob-Meyer decompo-
sition

dxt = dxt + dxt .

Define the martingale and finite variation differentials of xt by

d"‘xt = utdxmt, dfxt = utdxt . (16)

These are again symbolic definitions. The differentials exist as objects against which one
can integrate a locally bounded previsible process at in T*M over zt :

03C3 03B1s(dmxs) = 03C3 ad(u,dx8 ).
(In fact the martingale differential does not depend on the choice of connection.) We have
a Doob-Meyer decomposition

dzt = dmxt + dfxt. (1-?)

If dfxt = 0 we call xt a martingale. It is clear that if dmxt = 0, then xt has finite variation.
The Ito integral respects the Doob-Meyer decomposition. If

dzt = 03B1t(dxt)

then xt has Doob-Meyer decomposition

dzt = 03B1t(dmxt) + 03B1t(df xt).
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The Doob-Meyer decomposition changes under an absolutely continuous change
of probability measure according to the Girsanov formula. If P is absolutely continuous
with respect to P on each with continuous density martingale pt, then, in an obvious

notation,
dm,Pxt = dm,Pxt - ~xt~03C1t 03C1t. (18)

5. Covariant stochastic calculus in a vector bundle: Stratonovich and Ito

differentials, Doob-Meyer decomposition and Girsanov formula

We return to the general set-up of Section 3. Let vt be a semimartingale in F
over Xt. Recall that ut is a horizontal lift of Xt. We define the covariant Stratonovich

differential
Dvt = ut~(u-1tvt). (19)

Thus Dvt is the vertical projection of the total Stratonovich differential ~vt. This is

a symbolic definition by which we are led to define various covariant Stratonovich and
quadratic integrals. Suppose Vt is a semimartingale in F Q9 T*M over xt, then

Dvt = 

means

~(u-1tvt) = u-1tVt(~xt),
or in full 

u-1v = u-103C3v03C3 + 03C3 u-1sVs(~xs).

For a semimartingale Wt in F Q9 F*, and for locally bounded previsible processes At in
F Q9 T*M Q9 T *M, Bt in F Q9 F* Q9 T*M and Ct E F ~ F* Q9 F*, all over xt, it will now
be obvious how to interpret the following equations of differentials

Dwt = Wt(DVt),
Dat = At(~xt, 8xt), ,
Dbt = Bt (Dvi axt ), ,
Dct = Ct(DVt, DVt).

Covariant quadratic integrals give rise to processes of finite covariant variation.

There is an extension of the chain rule. Let f E C°°(F, F). (This notation implies
7T o f = 7r.) Then, by the chain rule (7),

= vt)) = vt) + 
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where f(u v) = u-1 f( uv) and vt = u-1tvt, where d f denotes the differential as a function
of u and D f the differential as a function of v. But aut is the horizontal lift of so we

get the covariant chain rule

D(f (vt)) = + D f (vt)Dvt, , 
~ 

(20)

where D f is the derivative in the fibre.

We note three special cases. For a section f of F we get

D(f (xt)) = (21)

and for semimartingales pt in F* and vt in F over xt we have a product rule

= + (22)

If there is a metric on F with which V is compatible, then for semimartingales vt and wt
in F over xt

awt, wt~ _ + wt, 

in particular for e E E,

~|ute|2 = 2(D(ute), ute~ = 0,

showing that, if uo is an isometry, then the horizontal lift remains an isometry for all time.

The notion of parallel translation is invariant under time reversal. By this we mean
that if (xs 0  s  t) happens to be a semimartingale for some reverse-time filtration
and if we write fot for the corresponding reverse-time parallel translation map Fxt -~ Fxo,
then

fot = TOt.

To see this, recall that (Tos 0  s  t) is characterized by the fact Too = id, together
with the covariant chain rule:

0tf(xt) - f(x0) = t0(0s~f)(~xs), f ~ 0393(F).

Discrete approximation shows that

t0 t0(0s~f)(~xs) = t0(ts~f)(xs),

the right hand side being a reverse-time Stratonovich integral. Hence, for all f E r(F),

f(xt)-t0f(x0) = t0(ts~f)(xs),
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showing that fto = Tto as claimed.

We define the covariant Ito differential of a semimartingale vt in F over xt by

Dvt = (23)

Thus the covariant Ito equation
Dwi = Vi(Dvt),

where Vt is a previsible process in F ~ F* over xt, is to be interpreted as

u-1w = u-103C3w03C3 + 03C3 u-1sVs(usd(u-1svs)).
There is a covariant Doob-Meyer decomposition for semimartingales vt in F over

xt. Suppose vt = u-1tvt has Doob-Meyer decomposition vt = vo +vmt +vt . Set vm = utvm
and vt = utvt then

Dvt = Dvmt + Dvt (24)

and we call this the covariant Doob-Meyer decomposition of vt. If vt = 0 we call vt a local
covariant martingale and if vm = 0 we say vt has finite covariant variation.

The covariant Ito integral respects the covariant Doob-Meyer decomposition: if

Dwt = 

then wt has decomposition

Dwt = Vt(Dvm) + Yt(Dvt ).

There is a covariant Girsanov formula. Suppose P is absolutely continuous with
respect to P on each with density martingale pt. Then

Dvm’P = Dv"1’P - . (25)
pt

6. Covariant stochastic calculus in a vector bundle continued: Stratonovich
to Ito conversion and the Ito formula

The set-up remains the same as for the last section, except now we insist that F
has the form T M C F’ and that V respects this direct sum. Thus we include also the
set-up of Section 4.
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We need to tidy away one more Ito integral: for a semimartingale xt in M and
a locally bounded previsible process Vt in F ® T*M over Xt, there is the covariant Ito

integral
, Dwt = 

According to (14) and (23), this means

u-1v = v-103C3v03C3 + 03C3 u-1sVs(usd(u-1sxs)).

As usual, this respects the Doob-Meyer decomposition and wt has decomposition

DWt = Vt(dmxt) + Vt(df xt).

Up to this point, two sorts of stochastic calculus on manifold, Stratonovich and

Ito, have been developed in parallel. We have seen that the Stratonovich calculus is

well adapted to the geometry in that it obeys the chain rule (7). On the other hand,
the Ito calculus is well adapted to the probability in that it preserves the Doob-Meyer
decomposition. To get a useful theory the geometry and probability must be tied together:
we need to know how to move between Stratonovich and Ito. Thus the central result in

stochastic calculus is the Stratonovich to Ito conversion formula. For semimartingales xt
in M, vt in F, Vt in F ® T*M and Wt in F ® F*, all over xt, we have

= Va(dxt) + (26)

Wt(Dvt) = Wt(Dvt) + ZDWt(Dvt). (27)

We deduce (26) from (1):

= 

= + 

= + 

The proof of (27) is similar. Notice that, even in the simplest case where at is a semi-

martingale in T*M over xt we have

at(axt) = at(dxt) + zDat(axt).

Without covariant stochastic differentials, this central formula cannot be expressed in such
a simple way.

, 

. 

We make two deductions from the conversion formula: the first is the covariant Ito
. formula and the second the conversion rule for stochastic differential equations.
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Let f E C°°(F, F) and let vt be a semimartingale in F over xt. We already have

the covariant chain rule (20)

= + Df(vt )Dvt ,

where D f is the derivative in the fibre

D(f (vt )) = + D f (vt )Dvt + + Z D(D f (vt ))Dvt.

Now apply the chain rule to f(vt)) and D(D to obtain the covariant Ito formula

D(f(vt)) = + Df (vt )Dvt
+ ~xt) + f (vt)(Dvt, DVt). (28)

We note two special cases. If f is a section of F, then

= (29)

If vt in F and pt in F* are semimartingales over xt, then

d(cpt(vt)) = D03C6t(vt) + 03C6t(Dvt) + Dcpt(Dvt). (30)

7. Covariant stochastic differential equations

Suppose we are given semimartingales Xt in M and vt in F over zt , also, coefficients
V E COO(F, F ® T*M) and W E COO(F, F ® F*). The covariant stochastic differential
equation

Dwt = + W(wt)Dvt (31)

is simply a concise way of writing the ordinary stochastic differential equation

aWt = V (ut, wt)axt + W (ut, wt)8vt,

where we have chosen some uo E U over xo, ut is the horizontal lift of zt starting from
uo, ot = u-1twt, V(u,w) = ~xt = u-1t~xt, W(u, v) = and

vt = There is therefore no separate theory of covariant stochastic differential
equations! If V and W are smooth then there is a unique solution up to explosion.

If V and W are affine in vt, then V and W will be affine in vt, so there will be no

explosion. Another case where we can prevent explosion is when there is a metric on F
compatible with V; then, as we saw in Section 5, the horizontal lift remains bounded, so
the covariant Ito equation

Dwt = V(wt)dxt + W(wt)Dvt
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does not explode provided the fibre derivatives DV and DW are bounded. We shall see
that this case in fact provides a criterion of non-explosion for the general Stratonovich
equation (31).

One can always transform a covariant Stratonovich equation into a covariant Ito
equation by the Stratonovich to Ito conversion rule (26), (27). Equation (31) becomes

Dw~ = V(wt)dxt + + 

By the covariant chain rule

D(V(Wt)) = + DV(Wt)DWt
= + DV (wt)(V (vt)8xt + W(Wt)DWt).

Hence the Ito form of (31) is

.Dwt = V(wt)dxt + W(wt)Dvt
+ ZDV(wt)W(wt)(Dvt,Bxt)
+ ZDW(wt)W(wt)(Dvt,Dvt). (32)

For A ~ r(End F ® T *M) consider now the linear equation in End F over xt

Dzt = -A(axt)zt.

Write zj, t > s, for the unique solution starting from the identity at time s. Notice that
z-1t satisfies

= )A(axt)

so cannot explode, that is, zt remains invertible. Set ~~t = By the covariant
chain rule, for f E r(F),

= + 

that is

_ + 

This shows that is simply the parallel translation map corresponding to the new
connection ~+A. Moreover, if DA is the covariant Stratonovich differential corresponding
to V + A, then

03B6t0DAvt = ~(0tz-1tvt) = t0D(z-1tvt) = t0z-1t(D + A(axt))vt
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so that

DA = D + A(axt).

Given a vector bundle F over a compact manifold we can always construct a metric
on F and a connection ~° compatible with the metric. (See for example [DFN], Lemma

25.1.4. ) Any given connection V may then be written as ~0 + A for some A E 0393(End F ~
F*M). Thus the covariant Stratonovich equation (31) may be written

(D° + A(8xt))Wt = V (wt)axt + W(Wt)(DO + 

This may then be written in Ito form (see (32)) so as to obtain a criterion for the non-
explosion of wt. In certain cases one also gets LP estimates this way (see the Lemma
below).

8. Probabilistic interpretation of heat semigroups

Let M be a compact Riemannian manifold and let F be a vector bundle over M.
There is a natural class of linear second order differential operators on the space of smooth
sections r(.F’): call ,C a Laplacian if in any (and hence every) coordinate system

~""M~
is a first order differential operator (where (dxs, dx?), the inverse of the metric
tensor).

There is a more constructive way of describing the class of Laplacians. Let V be
any connection on F and let V E r(End F); write V also for the Levi-Civita connection
on T*M and for the product of these connections on F Q9 T*M, then

,C = 1/2tr~2 + V (33)

is a Laplacian, and moreover any Laplacian can be written in this form.

There are three ingredients to the decomposition (33), each of which may be chosen
arbitrarily: the metric g defining the trace, the connection V and the potential V. To
each of these three there corresponds naturally a stochastic process and together these
processes may be used to write down a path integral formula for the heat semigroup 
The process corresponding to the metric is Brownian motion. Given a starting point
a-o E M, this is the unique semimartingale xt with values in M such that

Xt is a martingale
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and for a section b of T*M Q9 T*M

b(axt, 8xt) = trb(xt )8t.

The process corresponding to the connection is the parallel translation 0t : Fxt ~ Fxo
along 0  s  t, characterized by

a(Totf (xt)) = 

Finally define a stochastic exponential et in End S over Xt by the linear covariant equation

Det = et V(Xt)8t, eo = id.

The following result is a generalized Feynman-Kac formula.

Theorem

For all f E r( f ) we have

f)(xo ) = ELTOtet f (xt )] . (34)

Proof. Write Pt = . Fix T > 0 and f E r(F). We compute the covariant Ito differential

D(etPT-tf (xt)) = (®et)PT-tf (xt) + 
= 

+ et{~PT-tf(dxt) + ~2PT-tf(~xt, ~xt) }
= et~PT-tf(dxt).

This shows that Mt = 0tetPT-tf(xt) is a local martingale. The following lemma implies
that suptT|Mt| is integrable, so Mt is a martingale and E(MT) = E(Mo), proving the
theorem. D

Lemma

Let U E r(End F ® T*M) and V E r(End F). Then for any zo E Fxo, the
covariant linear stochastic differential equation in F over Xt

Dz~ = (U(xt )8xt + 

has a unique solution starting from zo. . Moreover, for any metric on F we have

E sup  o0/
for all 1 ~ p ~ ~ and 0 ~ t  ~.



205

Proof. Existence and uniqueness of the solution are standard. Fix a metric on F and an

inner product on E. We deal first with the case where the connection V is compatible with

the metric on F. Let uo be a linear isometry from E to Fxo and let Ut be the horizontal

lift of zt in GL(E, F) starting from uo. Then ut remains an isometry for all 0  t  oo.

Set it = u-1tzt and 8xt = then = |zt| and xt is a Brownian motion in Rn.

Moreover Zt satisfies the stochastic differential equation in E

8zt = + V(ut)at)zt, zo = u-10z0,

where U(u) = and V(u) = By compactness, U and V are bounded

on O(E, F), so by the usual combination of Burkhölder-Davis-Gundy inequalities and
Gronwall’s Lemma,

E sup  oo/
for all 0  t  oo and 1  p  oo, as required. Now any connection on F may be written
as V + A where V is compatible with the metric and A E r(End F Q9 T*M). Write DA
for the covariant Stratonovich differential corresponding to V + A. Then

DAzt = (U(xt)8xt + V (xt)at)zt

if and only if

Dzt = ((U - A)(xt)8xt + V(xt)8t)zt.

The lemma follows. 0

Let A be the Laplace-Beltrami operator and let X be a vector field on M. Then

Laplacian so (34) must provide a formula for the semigroup of Brownian
motion with drift X. We are not used to this being a corollary of the Feynman-Ka
formula! So let us examine the details. In this case the vector bundle is the trivial line

bundle M x R. Denote by ~ the 1-form dual to X by the metric; then for functions f , g
on M

~~~ f l9 = ( Z 0,~)9 + (df ~ (d + ~)g).
This identifies the connection corresponding to ,C as V = d + ~. Using the Levi-Civita
connection on T M we then have

20 f + X f + (divX + 

so the potential is V = -~(divX + 

The covariant chain rule gives us a way of recovering the horizontal lift ut: we must
have, for any function f,

= 
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Hence u-1t satisfies
= 

which implies

u-1t = u-10 exp{t0 03BE(~xt)}.
The action of ut on End F is trivial, so the covariant equation

Det = etV(Xt)8t

has solution

et = + |X|2)(xs)ds}.

Hence (34) reads

as we should have known!

9. Infinitesimal analysis of the image of a semimartingale under a map

This section and the following section show how one can use the differential formal-

ism, especially the Stratonovich to Ito conversion formula, to identify local martingales
and Brownian motion. The main point is that the formal steps taken and the resulting
differential formulae are simple. Some justification of these steps is left to the reader.

Suppose we are given two manifolds M and N and a smooth map f M - N. Let

zt be a semimartingale in M and set y~ = f {xt). Then the Stratonovich differentials are
related by the tangent map

ayt = f*(axt) (35)

and for b E r{T*N ~ T*N) the quadratic variation satisfies

b(8yt , 8yt ) = (f * b){axt, axt ) . (36)

In order to discuss Ito differentials and martingales we must first fix connections
on M and N. The relation between the map f and these two connections is described by
the fundamental form of f which we shall briefly introduce. We refer to Vilms [V] for a
fuller account of this and other aspects of the geometry needed below. We can regard TN
as a vector bundle over M, the fibre at x being This bundle is given the pull-back
connection by f of the connection on N, so that parallel translation in T N is the same
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whether it is regarded as a bundle over M or over N. This applies to translation along
semimartingales as well as along smooth curves.

The tangent map f * can thus be regarded as a section of TN Q9 T*M over M, and
the covariant derivative ,Q( f ) = V( f*) of this section is the fundamental form of f . Thus
,0( f )(x) is a bilinear form on TxM with values in We compute the covariant

Stratonovich differential

_ _ ~(f )(’~ axt) 

We apply the conversion rule to (35) to obtain

dyt = f*(dxt) + ZD(f*(xt))axt

so

dyt = f*(dxt) ~ (37)

Some well known results are easily deduced from (36) and (37). Since Ito integrals
preserve local martingales, we see that f preserves local martingales if and only if

03B2(f)(~xt,~xt) = 0

for all local martingales xt. By appropriate choices of zt we see this is equivalent to
the vanishing of the symmetric part of ,0( f ). Now suppose M is Riemannian with its
Levi-Civita connection and that Xt is Brownian motion, then

~i( f )(8xt, 8xt) = 

so is a local martingale if and only if trace,Q( f ) = 0. Suppose moreover that N is
Riemannian with Levi-Civita connection, then using Lévy’s characterization of Brownian
motion, we see that f (xt ) is also Brownian motion if and only if trace /~( f ) = 0 and f *
restricted to (ker f * )1 is an isometry, that is, f is a Riemannian submersion.

10. Factorization of Brownian motion in a Riemannian submersion with totally
geodesic fibres

Let 7T : be a Riemannian submersion. Set V = ker x* and H = 
so that T M = and an isometry. Vilms [V] states that the fundamental form
/?(7r) vanishes on H x H. Suppose that the fibres Mx = are totally geodesic, that
is to say every geodesic of Mx is also a geodesic of M. Vilms shows that this is equivalent
to the vanishing of ,Q(~) on V x V and also to the vanishing of the fundamental forms of
the inclusions Mz - M. As discussed in [EK], ~r is naturally associated to a principal
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bundle ~7 2014~ B whose structure group is the group of isometries of a typical fibre F. The
elements of Ux may be regarded as isometries u : F --~ Mx. Given a semimartingale xt in
B and an initial isometry uo : F -; Mxo there is a unique semimartingale ut in U over Xt
such that 8ut(z) E H for all z E F. We call ut the horizontal lift of xt.

W.S. Kendall suggested that we should be able to give a ’stochastic calculus’ proof
of a result he obtained with K.D. Elworthy in [EK], namely that if x~ is Brownian motion
in B with horizontal lifi ut and if zt is an independent Brownian motion in F, then yt :=
ut(zt) is Brownian motion in M. We shall sketch a proof based on Levy’s characterization
of Brownian motion using the formalism developed above. Elworthy and Kendall on the
other hand use a geodesic form of Ito’s formula to compute the required generators. There
is a third proof by Liao [L] which is entirely analytic.

Write 8yt = 8y[1 e 8yr in the decomposition H e V. . From = xt and

yt = ut(zt) we deduce = 8xt and ayt = (ut)*8zt, 8ut(z) being horizontal. So
we have

8Yt = (~r* ® (ut)*8zt.

Both 7r*IH and (ut)* are isometries and this is an orthogonal decomposition, so yt does
have the quadratic variation of Brownian motion. In fact we can show

dYt = ® (ut)*dzt

so yt is also a local martingale and is thus Brownian motion. For the first component

_ + 

and

D(03C0*(yt))~yt = 03B2(03C0)(~yt, ~yt) = 0

because ,Q(~r) vanishes on H x H and V x V and zt and zt are independent. For the second
component

(ut)*8zt = (ut)*dzt + ZD((ut)*(zt))azt

and

+,~(ut)(az~~ = 0

where the first term vanishes because ui is driven by 8Xt which is independent of zt and
the second term vanishes because Ut : F -> M is totally geodesic.
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