Markov processes on the boundary of the binary tree
Séminaire de probabilités de Strasbourg, Tome 26 (1992), pp. 210-224.
@article{SPS_1992__26__210_0,
     author = {Baxter, Martin},
     title = {Markov processes on the boundary of the binary tree},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {210--224},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {26},
     year = {1992},
     mrnumber = {1231996},
     zbl = {0773.60073},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_1992__26__210_0/}
}
TY  - JOUR
AU  - Baxter, Martin
TI  - Markov processes on the boundary of the binary tree
JO  - Séminaire de probabilités de Strasbourg
PY  - 1992
SP  - 210
EP  - 224
VL  - 26
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1992__26__210_0/
LA  - en
ID  - SPS_1992__26__210_0
ER  - 
%0 Journal Article
%A Baxter, Martin
%T Markov processes on the boundary of the binary tree
%J Séminaire de probabilités de Strasbourg
%D 1992
%P 210-224
%V 26
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1992__26__210_0/
%G en
%F SPS_1992__26__210_0
Baxter, Martin. Markov processes on the boundary of the binary tree. Séminaire de probabilités de Strasbourg, Tome 26 (1992), pp. 210-224. http://archive.numdam.org/item/SPS_1992__26__210_0/

[1] R.M. Blumenthal and R.K. Getoor. Markov Processes and Potential Theory (Academic Press 1968). | MR | Zbl

[2] M.B. Marcus and J. Rosen. Sample Path Properties of the Local Times of Strongly Symmetric Markov Processes via Gaussian Processes. Ann. Prob. (to appear) | MR | Zbl

[3] L.C.G. Rogers. A Guided Tour through Excursions. Bull. London Math. Soc., 21 (1989), 305-341. | MR | Zbl

[4] L.C.G. Rogers and D. Williams. Construction and Approximation of Transition Matrix Functions. Analytic and Geometric Stochastics, suppl. to Adv. App. Prob., 18 (1986), 133-160. | MR | Zbl

[5] L.C.G. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales, vol. 2: Itô Calculus (Wiley 1987). | MR | Zbl

[6] D. Williams. Diffusions, Markov Processes, and Martingales, vol. 1: Foundations (Wiley, 1979). | MR | Zbl

[7] R.W. Wolff. Stochastic Modelling and the Theory of Queues (Prentice-Hall 1989). | MR | Zbl