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Extending Probability Spaces and Adapted Distribution

D. N. HOOVER

Odyssey Research Associates
301A Harris B. Dates Dr
Ithaca NY 14850-1313
USA

Abstract. We develop adapted distribution, a notion of equivalence for processes with filtra-
tion, in terms of extensions of probability spaces with filtration.

INTRODUCTION

In probability theory, one often argues so:
Enlarging the space, if necessary, there exists a random variable Y such that ...

Constructing the extension is close to trivial, so no more is generally said. In the general
theory of processes, in which a filtration is present, some care must be exercised, because
recklessly enlarging a filtration may destroy essential properties of the original processes
relative to the filtration, such as the martingale property or the Markov property.

It turns out that the safe way to extend a space with filtration is as follows. This method
of extension and related conditions have been discussed by [Je], [AB] and [JM].

0.1 DEFINITION. An extension of a probability space with filtration (, F, P,F) is a space
(Q,6,Q,G) satisfying
1) Q = Al x Q x A? for some sets A',A?, and G = H! x F x H?, G is the smallest
filtration such that for each t € {0, oo] G: D H! x F; x H?, for some H* o-algebras
and H* filtrations on A*, i =1,2.
(2) foreach F€ F, F = A1 xeA2 € G and Q(F) = P(F) .
(3) Forall s € [0,00], F.o and G, are conditionally independent given F,. Equivalently,
for all F € Foo, .
Q(F | Gs) =(P(F | Fs))

The conditional probability need not be regular; it denotes only a set version of condi-
tional expectation. Equality is always almost sure or up to indistinguishability, whichever
is appropriate.

This notion of extension could be given in a more abstract and general form, but the
concrete form we have given suffices for our purposes.

During part of the time this work was in progress, it was supported by an NSERC operating grant, and
the author was an NSERC University Research Fellow.
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The purpose of defining this notion of extension is to make sure that an induced process

X on €, given by

X(Ayw, Ae) = X(w),

where X is a process on 2, has the same properties relative to the filtration G as X has
relative to F. A very general definition of “having the same properties with respect to
filtrations” is that of having the same adapted distribution, defined in [HK]. Processes
with filtration that have the same adapted distribution agree on the usual properties of
processes, such as the martingale (or semimartingale, etc.) property, the Markov property,
and also on properties that may involve extensions of their space, such as having weak
solutions of a given stochastic differential equation (see [H1], [HK]).

The first purpose of this paper is to observe that adapted distribution is exactly the
notion of equivalence of processes that goes with extensions of probability spaces. That is,
Q satisfying (1) and (2) of the definition is an extension of (that is, satisfies (3)) iff for
every process X on §, (X,F) and (X ,G) have the same adapted distribution. The second
purpose is to show how using the method of extensions of spaces, instead of the method
of saturated spaces, leads to much simpler and slightly more general versions of theorems
proved in [HK] and [H2].

Because we feel that our present approach improves considerably on [HK], and because
some changes were required in order to discuss convergence in adapted distribution (in
[H4]), we have given all the definitions concerned with adapted distribution. In cases when
we generalize results in [HK] or [H2], however, we will refer to the original papers for
details, since it would be idle to repeat them.

Weaker invariants of processes with filtration have been given by Jacod [J] (local, or
predictable, characteristic), and Aldous [A] (synonymity). Neither adapted distribution
nor either of the others is easy to compute. Our feeling is that in most cases when any
of them can be computed, they are equivalent (as in the case of independent increment
processes). The advantage of adapted distribution is that it is designed to have a good
structural theory.

Preliminary versions of some of the results in this paper were announced in [H3].

1. PRELIMINARIES ON TOPOLOGIES AND FILTRATIONS

A probability space with filtration (or stochastic base or adapted probability space) is a
structure @ = (2, F, P,F), where the filtration F = (]:t)tG[O,oo] 1s an increasing family of
sub-o-algebras of 7. We assume here that F satisfies the usual conditions, that is, it is
right continuous, F; = ﬂs}t Fs, and complete in the sense that Fy contains the nullsets of
P. Foo need not be the same as either F or Foy_ = V, Ft, but except in measure theoretic
proofs, it will usually be F. Having a distinct F,, makes it easy for us to handle processes
which are not adapted. We could allow arbitrary subsets of [0, oo] as filtration parameter
sets, but a filtration (Gy)ier on (R, F, P) satisfying the usual conditions can be extended
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to a filtration (Ft)sefo,00] by letting

ft = gt, te T,
= (] Ge t=inf(TN[to00)),
s€TN[t,00]
= V G,, otherwise.
s€TN([0,t]

Here, to assure completeness, we take the empty join to consist of the null and co-null sets
of P, and we take the empty intersection to be F.

A stochastic process on (Q,F,P) is a pair X = (X,F) where X is a random variable,
F is a filtration on (Q,F, P), and X is Feo-measurable. Equality of random variables is
always taken as almost sure. We assume that X takes values in a metric space M, though
we do not generally require M to be separable or complete.

An object that is a stochastic process in the usual sense, that is, a function X : [0, 0] x
Q — M, will be treated as a random variable whose values are functions from [0, co] — M.
Different topologies may be applied to the trajectories, depending on their properties.

(1) For trajectories that are r.c.Ll. (right continuous with left limits, but not necessarily
left continuous at co), we may use a modified Skorokhod topology, so that zn, —
iff the restrictions of the functions to [0,00) converge in the Skorokhod topology
and z,(c0) — z(00). Functions without values at co may be given such values in
an arbitrary but uniform manner.

(2) If trajectories are measurable functions we may use the topology of convergence
in measure ([MZh]). For processes which we construct, we will normally use this
topology, even when trajectories are r.c.Ll. . This topology is given as follows. Let
p be a finite measure which is equivalent to Lebesgue measure on [0,00) and has
p(00) > 0—the topology does not depend on just which p is used. Convergence is
convergence in measure with respect to p.

(3) Uniform convergence or pointwise convergence. These topologies are, of course,
nonseparable.

The topology of convergence in measure does not separate trajectories which differ only
on a Lebesgue null subset of [0,00). It is, however, Hausdorff on r.c.l.l. trajectories, hence
the same as the Skorokhod topology on Skorokhod-compact sets of trajectories. It follows
that a Skorokhod-tight sequence of processes X,, n € N, converges in distribution to X
iff convergence in distribution holds for the topology of convergence in measure.

By the martingale convergence theorem, if = has a bounded, measurable trajectory in
the reals, then

z = lim z, a.e. py,
n—oo

where

k+1
n

:J ol

1 AL
#u(8) = g / o(s)u(ds), te€| )

zo(00) = z(00).
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This gives a Borel measurable (for convergence in measure) way of extracting z(t) for pu-a.e.
t from z which is Borel measurable for the topology of convergence in measure. Those
who wish to look into the matter will see that this can be used to show that the relation of
“having a.e. the same adapted distribution”, defined in [HK] is the same (modulo presence
of 00) to “having the same AD” as defined herein for processes with measurable trajectories
and the topology of convergence on those trajectories.

For each separable metric space M, we fix a countable set C'ps of functions M — [0,1]
which are dense among functions K — [0, 1] for each compact subset K of the completion
M of M. A canonical choice would be the linear lattice generated over the rationals by
the functions d(a,z) A 1, where d is the metric, and a belongs to a given countable dense
subset of M. The separable topology (relative to Cir) on the space of measures on M is
the weakest topology such that the map p — u(4) is a continuous function of u for each
¢ € Cym. This topology is Hausdorff, because all measures on M are tight considered as
measures on M. Hence it is the same as the topology of weak convergence on precompact,
hence M-tight, families of measures on M.

1.1 DEFINITION. F is a subfiltration of G, F C G, if F; C G, for every t € [0,00). f F CG,
we say that F is self-contained in G, or G is an eztension of F (Aldous and Barlow [AB],
condition H in [Je]), if for each t € [0,00] Foo and G, are conditionally independent ( ci.)
given Fy).

We write F < G.
A family of o-algebras H*, i € I, is conditionally independent given K if for any distinct
21y... 4 € I and HJ € Hii’j =1,...,n,

P(() Hy | k) =[] P(H; | K).

j=1

In this paper we usually use it in the equivalent form given by [Lo] 25.3A. That is, since
Ft € Foo,Gt, Foo and G, are c.i. given Fy iff for each, F € Foo,

P(F|G)=P(F|F),

iff for each G € G,
P(G | Fo) = P(G | Fo).

We see from the first equivalent form that F < G iff every F-martingale is also a G-
martingale. The reader will observe that the crucial clause (3) in the definition of extension
of a probability space is that F < G.

We observe that the definition of self-containment applies not only to filtrations, but in
general to increasing families of o-algebras (i.e. not necessarily complete or right contin-

uous). If (Gt)eepo,o0 is an increasing family of o-algebras, let ((G;)) denote the filtration
generated by (G,),

(G)e = )GV N,

s<t
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where A is the ideal of nullsets of the relevant probability measure. Similarly, if S is
a family of measurable sets or Si,...,S, are measurable sets, then (S) or (S1,...,5a)
denotes the complete o-algebra generated by the given family or sets.

The following results are clear.

1.2 LEMMA.
(1) fF <G andG <H, then F <H.

(2) The intersection of a family of self-contained subfiltrations of G is self-contained.

(3) If (F1) < (G1), then ((F1)) < ((G0))-

From (2), it follows that if X = (X,¥) is a random variable with filtration, then there
exists a smallest self-contained subfiltration Z(X) of F such that X is Z(X)eo-measurable.
We call Z(X) the intrinsic filtration of X.

If (2, F, P) is a probability space, let Np denote the nullsets of P. If (A,G,Q) is another
probability space, a o-algebra isomorphism of (F, P) and (G, Q) is a map h:F/Np —
G/Ng such that whenever Fy, F; € F, and h(F;/Np) = Gi/Ng, Gi € G,

(1) P(Fl) = Q(Gl), 1= 112, and

(2) if Fy C F; then G; C G, (a.s.).

It follows that all the o-algebra operations are preserved a.s.

We abuse notation by writing h(F;) = G, ¢ = 1,2, though this is only defined a.s. We
extend the abuse to random variables by writing h(X) =Y if A({X € B}) = {Y € B} for
each open set B of their common value space M. Elementary measure theory gives us the
following result.

1.3 PROPOSITION. For any bounded Borel-measurable real function ¢,

(1) h(}ff(x)) = ¢(h(X)).

(2) EP[¢(X)] = E[$(A(X))].

Given F a filtration on (€, F, P), and G a filtration on (A, G, Q), we say that a o-algebra
isomorphism h of (Feo, P) and (oo, Q) is a filtration isomorphism of (¥, P) and (G, Q) if
for any t € [0,00], F € Fy iff h(F) € Gy. The following result is clear from Proposition 1.3
and the definition of conditional expectation.

1.4 PROPOSITION. If h : (F,P) — (G,Q) is a filtration isomorphism and X is an Feo-
measurable, integrable real random variable on (1, then for each t € [0, 0],

WE[X | i]) = E[A(X) | GJ-

2. DEFINITIONS OF ADAPTED DISTRIBUTION

We offer three definitions of adapted equivalence, each of which is the best for a particular
purpose. For two of them, we need some preliminary definitions.
Let X = (X,F) be a random variable with values in a metric space M.

2.1 DEFINITION. Adapted functions for M-valued random variables are defined as follows

(as in [H2], but with a slightly different basis clause, to make it easier to handle stochastic
processes which do not have r.c.l.l. sample paths).

(1) A bounded continuous function ® : M — R is an adapted function.
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(2) If fi1,..., fn are adapted functions, and ¢ : R® — R is bounded and continuous,
then ¢(f1,--. , fa) is an adapted function.
(3) I f is an adapted function, and t € [0,00), then E[f | t] is an adapted function.
The value of an adapted function f on X = (X,F) is defined in the obvious way by a
similar recursion:

#(X) = 2(X),
¢(f1’ e afn)(x) = ¢(fl(x)’ cee yfn(x))v
E[f | )(X) = E[f(X) | 7).

The next definition applies when M is separable, though this condition may not be

essential.
The Knight-Aldous prediction process Z(X) ([Kn], [A]) of an M-valued random variable
X is the measure-valued process given by

Z(X)(2) = E[2(X) | 4]

for ® : M — R bounded and continuous. We may take each Z(X); to be a regular
conditional probability. Since each Z(X)(®) is a martingale, we may choose a version for
which this is r.c.Ll. for each & € Cy. Giving the measures on M the separable topology,
Z(X) isr.c.l.l. . Give the trajectories the topology of convergence in measure. This makes
the trajectory space separable, and we can repeat the construction.

2.2 DEFINITION. mu(X), n € N ={1,2,3,...} and m(X) are given by

my (X) = Z(X),

M1 (X) = Z(ma(X), ).
m(X) = (ma(X);n € N)

This is a modification of the definition in [HK]. It fills the same rdle for adapted equiv-
alence and is more suitable for convergence in adapted distribution, discussed in [H4].

2.3 THEOREM. Let X and Y be random variables with values in the same metric space
M. The following are equivalent.

(1) There is an filtration isomorphism h : I(X) —-vI(Y) such that h(X) =
(2) For any M-adapted function f, E[f(X)] = E[f(Y)).
(3) m(X) ~ m(Y) (when M is separable).

By ~ we mean that the processes have the same distribution.

PRrROOF: That (1) implies each of (2) and (3) follows from iterated application of Props.
1.3 and 1.4. To show (2) implies (1), let J(X) be the filtration generated by the adapted
functions of X: J(X), is generated modulo nullsets by the random variables f(X) such
that f is an adapted function of the form EJg | t], and J(X)o is generated by all adapted
functions of X. If F € J(X)e and € > 0, then there is an adapted function f taking
values in [0, 1] such that

E|lI(F) - fl<e.
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Hence by Jensen’s inequality,
E|P(F | 72) - E[f [ )(X)| < e.

It follows that J(X) is self-contained in . The argument that (1) implies (2) shows that
J(X) CI(X), so the two must be equal. The same applies to Y. The map h which sends
{f(X) € B} = {f(Y) € B} for each Borel set B C R is measure preserving by (2), hence
it is an isomorphism of Z(X)e, and Z(Y)e. Since it maps {E[f | t}(X) € B} — {E[f |
t](Y) € B}, we see that it is adapted, so (1) holds. That (3) implies (1) is similar.

We say that X and Y are adaptedly (or stochastically) equivalent, or have the same
adapted distribution, if any of the three conditions of the Theorem holds. Most people
want to know what is the adapted distribution itself. We can give this name either to the
operator which maps f — E[f(X)], or to the distribution of m(X). When X and Y have
the same adapted distribution, we write

X =AD Y.

2.4 THEOREM. If (Q,6,Q,G) is an extension of (,F,P,¥), and X is a process on
(2, F, P,F), then (X,F) =4p (X,6).

PROOF: h(F) = A; X F x A; is a filtration 1somorphlsm of F and F. By definition of
extension, F < G. Hence, by Lemma 1.2, h(Z(X)) = Z(X).

3. AMALGAMATION AND ADJUNCTION

The results of this section show how to extend an adapted probability space in order to
add another process.

3.1 LEMMA. Let (/,G7,P%), j € J, be probability spaces, and let .7::" cCgi,jel, be
sub-o-fields, with measure algebra isomorphisms h : (F, P) — (¥7, P?), where (F, P) =
(FJo, Po) for some jo € J, and h° is the identity. Then the map Q : [1;6’ — R given by

a[]e) = [TIw)Pi) | 7y

is a probability measure on ([]; (9 1 G7). If o/, j € J are the coordinate projections
w = wj, then (n3)~Y(F?), j € J are xdentxca.l modulo nullsets, and (77)~(G’), j € J are
c.i. given (w?)~1(F7).

PROOF: Since any set in H G’ depends on only countably many coordinates, we may
assume that J is countable. For each j € J, the map ¢’ : 9 x G7 — R given by

¢(w,G) = (B)"H(PI(G7 | F))(w)

is nearly a kernel, in that any fixed version of it is a.s. countably additive on any count-
able subalgebra, and this is enough to make the usual product measurability theorem go
through (as [Ash], Theorem 2.7.2). Hence Q defines a probability measure. The remaining
statements follow trivially.
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3.2 AMALGAMATION THEOREM. For j € J, let (9, F7, P, F7) be adapted probability
spaces, let T9 < F?, and let b7, be a filtration isomorphism (Z7°, P7°) — (T, P?), with
hi° the identity. Then (Q,F7,P7 F7), j € J, have a common extension (2,6,0,6G), with
Q= HjeJQj, such that
(1) for any I € 3%, and j € J,
(n7°) 1) = («7) T W(I)) 25.(Q),
where for each j, n7 is the projection w — wji
(2) FL, j € J, are conditionally independent given T;
(3) T<G.
PROOF: Apply the Lemma to F7, I, j € J, toget Q on G = Hj F7, and let G be the
filtration on (2, G, Q) generated by the increasing family of o-algebras ([]; 7). (1) and
(2) hold trivially, so we need only show (3) and that Q actually is an extension of each
', j € J. In the following we will simplify notation by ignoring the distinction between
F and F, T and 7, and we will write the latter as Z. Let us first show that Q actually
is an extension of each &’. Fix j. By 1.2(3), we need only show that 77 < (II; 7). Let
FeFl,and GeF!,G € Ff\,i=1...n. Then
Q(FGG'---G™) = E[Q(FG | Too)Q(G" | Too) - - Q(C™ | Tos)]
= E[Q(FG | Z0)Q(G" | Zt)--- Q(G™ | T)]
= E[Q(FG | F)Q(G" | T,)--- Q(G™ | T,)]
~ E(Q(F | GG 6"
The first equality follows by definition of Q, the second because T < F* , J € J, the
third by definition of conditional probability, the last by moving G outside the conditional
probability and reversing the chain of equalities. Since sets of the form GG 1...G™ form a
semiring generating I1; 77, this shows, by [Lo] 25.3A, that FZ and G, are c.i. given F,
as was required. To prove (3), repeat this argument with F' € T} =T, and in the last
line of the equation replace F; by Z; using T < F.
3.3 ADJUNCTION THEOREM. Suppose (X,F) is a process on (Q,F,P), and (X', Y',F) is
a process on (', F', P') such that (X,F) =ap (X',F'). Then (R, F, P,¥) has an extension
(2,6,Q,G) which carries a random variable Y such that
(X,Y,6) =4p (X', Y',F).
PROOF: Amalgamate (Q,F, P,F) and (&, F', P',F') over the isomorphism of Z(X) and
I(X') given by X =4p X' and let Y = V.
The Adjunction Theorem is similar to the definition of a saturated space in [HK] (see
§6, below). The differences are

(1) the Adjunction Theorem realizes a process on any space by enlarging it, whereas a
saturated space is a particular kind of space that does not need to be enlarged;

(2) for saturated spaces, the process to be realized must have a separable target space,
whereas the Adjunction Theorem has no such restriction.
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Stronger forms of saturation could be given to get around (3), but our feeling is that the
Adjunction Theorem is so much simpler that it makes saturation obsolete.

Here is an example showing that conditionally independent amalgamation of filtrations
over a common self-contained subfiltration does not necessarily yield a right-continuous
family of o-algebras. We ignore the distinction between sets and their indicator functions.

3.4 EXAMPLE: Let U, V,, n € N, be independent Bernoulli trials with probability 1/2.
Then W, = U @ V,,, n € N, where @ is mod 2 addition, are also independent Bernoulli
trials with probability 1/2, and are independent of U. Let

1
Ge=(Vasn>-), t>0,

-t
Go = (0),
He = (Wasn > %), t>0,
Ho = (0).

Both G and H are right continuous at zero by the Kolmogorov 0-1 law, and they are trivially
right continuous elsewhere. Let

.ﬁ=(Vm@Vn,m,n2%’), t>0’

Fo = (0).
We claim that
(1) For each t, Fy = G N H,.
(2) G = Go and H = H, are conditionally independent given F = Foo.
(3) F<G N
That is, G and H are independent over their common self-contained subfiltration F. (G: V
H.) is not right continuous, because, U € G: V H; for each t > 0, but Gy V Hp is trivial.

Now to prove our claims. We will first prove (2), since everything follows from that.
Clearly F C G N'H. By [Lo] 25.34, it suffices to show that for any H of the form

Wi, n...nW;,,

P(H | G) = P(H | F), since, by inclusion-exclusion, any set in the semiring generated by
the W,’s can be obtained from these by linear operations. By definition of the Wy,’s, one
sees that an element w € H iff w is in U but in none of the V;;’s, or w is not in U, but in
all of the V;;’s. Thus

H=Un(VHu@n )]V

i<n j<n

which is a disjoint union, hence

P(H|g>=§(nv,f+ﬂu~,.),

j<n j<n
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Since U is independent of G and the others are G-measurable. But the right hand side is
equal to

% I[ 1ev,0v |,
J<k<n
which is F-measurable. This proves the claim. If we replace H by M, t > 0, we get
the same result, but with all the i;’s < 1/¢, which shows that G and M, are conditionally
independent given F;. Since F C G, F and 'H; are conditionally independent given F;, that
is, F <M. By symmetry, F < G. F, is certainly contained in G; N"H;. Since it is complete,
it must in fact equal the latter, because a set cannot be conditionally independent of itself
given F; unless it is in F;.

4. CHARACTERIZATION OF AD BY ADAPTED ADUNCTION

In [H2], we gave a filtration embedding condition sufficient to imply that two processes
have the same adapted distribution. In the present section, we generalize this condition
using the idea of extension/adjunction in order to give a simple characterization of adapted
distribution.

4.1 DEFINITION. Let (X,F) and (Y,G) be processes with filtration. We say that
(X,F) = (Y,6)
iff
(4.1.1) For every r.c.ll , F-adapted process X' taking values in a separable space, there
exists an extension G of G and a G-adapted process Y' such that

(X, X"~ (Y,Y").

The relation — as here defined is stronger than <+ as defined in [H2], except that it
allows the space of (Y,G) to be extended. Our first result is that if extensions are allowed
in < as defined in [H2], the resulting notion is equivalent to < as we have defined it here.

4.2 THEOREM. The following condition is equivalent to (X,F) — (Y,G).

(4.2.1) Same as (4.1.1), except that X' is restricted to be a step process, i.e. X' takes only
finitely many values, and there is some finite n and fixed times ti,... ,tn such that
X' has jumps only at times t,,... ,t,.

PROOF: Assume the condition, and let an F-adapted process X' be given. Let X®", ne N
be a sequence of finite-valued step processes which are F-adapted and such that X™ — X'
a.s. Then (X,X") = (X, X'). Choose Y™ such that (X, X"™) ~ (Y,Y™) for each n € N.
By [JM], Theorem 2.8, there is an enlargement of the original space with (Y,Y") such that
some subsequence of the (Y, Y™) converge weak-strongly to (Y, Y"). As in the proof of [IM]
Theorem 7.6, the space of (Y,Y") can be taken to be an extension of the original space.

The reader will observe that the weak-strong convergence results of [JM] are a very
useful tool in adapted distribution, though they are phrased in terms only of distribution.
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A similar convergence notion, but in terms of convergence in adapted distribution, and so
apparently less useful, was given in [HK], Definition 4.1. It will be observed in [H4], how-
ever, that any sequence which converges in distribution has a subsequence which converges
in adapted distribution, so the two amount to the same thing.

4.3 THEOREM (CHARACTERIZATION OF AD). X=4p Y if X > Y and Y — X.

PROOF: The (=) direction follows by the Adjunction Theorem. (<=) is similar to the first
part of the proof of Theorem 2.3 of [H2]. Since < as defined in this paper implies the —t
of [H2] modified to allow extensions, only the first part of that proof is needed.

Theorems 4.2 and 4.3 in [H2] can be made equivalences in the same way by changing
the definition of —spg to allow an extension of the target space.

5. STOCHASTIC DIFFERENTIAL EQUATIONS

Adapted distribution was originally inspired by the following problem. To find a solution
to a stochastic differential equation

t
Xe= K¢+ / #(s,X)d2Z,
0

where Z is a semimartingale, it may be necessary to enlarge the space with filtration which
carries the coefficients of the equation. Since this changes the coefficients, in what sense
can we say that the original equation has been solved? In [HK] the approach was to show
that on a saturated spaces, one need not enlarge the space to solve such an equation, and
that furthermore every equation was “the same”, in the sense of adapted distribution, as
one on a saturated space, so that one might as well work only on saturated spaces in the
first place. Here, we will review the results of [HK] about SDE’s and adapted distribution,
which were proved using saturated spaces, from the point of view of extensions of spaces.

The first observation to make, is that there is really no problem about enlarging spaces
to solve equations, because, as shown in [JM], Theorem 7.6, the enlargement of the space
can be done via an extension in the sense of this paper. Hence the equation on the enlarged
space is equivalent, in the sense of adapted distribution, to the original equation.

The second observation, is that in [HK], processes must take values in separable spaces,
so that the results given in Section 7 of [HK] do not cover path dependent integral equations
such as those solved in [JM]. This separability restriction also makes it awkward for [HK]
to state results about predictable processes without path properties (cf. [HK] Theorem
7.8). The extension approach does not have this restriction to separable value spaces, so
there is no problem with path dependent integrals, and we can talk about processes up to
indistinguishability by using the topology of uniform convergence, or uniform convergence
on bounded sets, on their trajectories.

Let D be the space of r.c.L.l. functions [0, 00) — R4, d € N, with the uniform topology,
and let D be the natural filtration on D. D is generated by those F' for which = € F
depends only on z*, which is z stopped at t,

z'(s) = z(s At).
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Following [JM], we say that k : 2x[0, 0c0) x D — R4*™ (which we consider officially to be a
random variable & — (([0,00) x D) — R**™), with the uniform topology on trajectories)
is predictable if it is measurable with respect to the predictable o-field, which is generated
by sets of the form

Fx(s,t] x G,

where F' € F, and G € D,. We get the following, cleaner version of [HK] Theorem 7.8.

5.1 THEOREM. Let (2, F, P,F) be an adapted space, with h as above and Z an R™-valued
semimartingale on Q and X, K, and W processes on ) such that

t
Xt=K¢+/ h(S,X)dZ,.
0

Let (A,G,Q,G) be another space with processes h', Z', K', and W' such that
(5.1.1) (h,Z,K,W,F) =4p (K,Z2',K'\W'G).

Then A has an extension on which h' is predictable and Z' is a semimartingale, and which
carries a solution X' to

t
X =K+ / K (s, X")dZ,
0

such that
(X’ h7 Z1 K, VV')]:) =4AD (XI, hl: Z') K',ng).

(We have written K' instead of K, etc., omitting the dots.)

In [H1] it was shown that it is not necessary to extend the space to make Z' a semi-
martingale, and the proof given there for the separable target space case can be extended
to show that h' is predictable without extending the space.

PROOF: Amalgamate Q and A over the isomorphism given by (5.1.1). Because the uniform
topology was used for trajectories of h, h and k' are indistinguishable on the amalgamated
space. Likewise K and K', and Z and Z' are indistinguishable on the amalgamation. So
the desired X' is just X.

6. SATURATED SPACES FROM EXTENSIONS

The approach of [HK] was based on saturated spaces. We have shown in the preceding
sections that suitable forms of the results in that paper can be advantageously rephrased
in terms of extensions. In this section, we sketch a proof that saturated spaces themselves
can be obtained using the Adjunction Theorem.

Let @ = (Q, F, P,F) be an adapted space. Q is saturated if it satisfies a restriction of the
Adjunction Theorem without having to be extended. That is, if (X,F) is a process on Q,
and (X',Y',F') is a process on another space such that

(X,F)=ap (X", F),
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X, X' and Y’ all taking values in a separable space, then there is a process Y on € such
that

(-X) lfa}-) =AD (X,aYIaF)'

This is apparently weaker than the definition in [HK]. We will take up that point later.

A saturated space is a kind of universal object familiar in algebra, universal algebra, and
model theory. A good exposition in model theory is [S] 16.4, though the usual proof that
any field has an algebraic closure contains the main ideas. Existence of saturated spaces
can be proved from the Adjunction Theorem by imitating [S] 16.4 and using the following
result at limit ordinal steps.

6.1 EXTENSION CHAIN THEOREM. Let &g, 8 < a, alpha an ordinal number, be a family
of adapted spaces such that for each v < f < a, Qg is an extension of ., and in fact,

Qp = Qo X H A‘Y'
v<B

Then g, B < a have a common extension.

PROOF: Let Q = x Hﬁ <o Mg, and give it the probabilistic structure induced by that
of the Qg’s. The resulting  is the required extension.

This method does not require the value spaces to be separable, only that the value spaces
permitted have dense sets of cardinality not more than some fixed bound. This guarantees
that there is only a set, rather than a proper class, of target spaces (up to homeomorphism)
to be considered.

The definition of saturated space given here is not the same as that given in [HK], which
was as follows. Let T C R. Given a filtration F, let FT be the smallest filtration such that
FT = Fi,t € T, and FL = Foo. Say that Q is T-saturated if it satisfies the definition of
saturation with F7 and F'T replacing F and F'. [HK] defined saturation as T-saturation
for each countable T'. This definition of saturation is actually equivalent to the one we have
given. In any case, Theorem 6.3 generalizes the Adjunction Theorem so that T-saturated
(for all T') spaces could be constructed by the method outlined above.

6.2 LEMMA. IfF is a right continuous filtration, and for each t, H and F; are conditionally
independent given Fy, then (F; V 'H) is right continuous.

PROOF: It suffices to show that for H € H and F € Foo, the martingale P(HF' | 7 V H)
has a right continuous version. One verifies from the definition that

P(HF | Ft VH) = 1gP(F | Fy).

The right hand side has a right continuous version by right continuity of F.

6.3 LEMMA. If (X,F) and (X',Y',F') are processes with filtration such that (X,F)=ap
(X',F') on T, then there is an extension G of F and a process Y on G such that

(6.3.1) (X,Y,67) =ap (X, Y, FT)
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PRrROOF: The proof of Theorem 3.2 goes throu%h with T as the parameter set of the fil-
trations, to produce a filtration H such that HT =M, F¥ < H, and (6.3.1) holds with H
replacing GT. Let G = (Fe VH,). If s is a right limit point of T, then G, = H, by right
continuity of H. Otherwise, G is right continuous at s by Lemma 6.3. Hence G is right
continuous, and hence a filtration. By definition, GT =%, so (6.3.1) holds.

6.4 THEOREM. A filtration F is saturated iff it is T-saturated for every T C R.

PROOF: The right-to-left implication follows by considering T' dense in R and applying
right continuity of the filtration. To prove the other direction, assume that JF is saturated,
fix T C R, and show that F is T-saturated. Suppose X is a process on F, and X' and Y’
are processes on F' such that (X,F) =4p (X',F') on T. Carrying out the extension in
Theorem 6.3 yields (X", Y",F") such that

(X,]:) =AD (X",]:”)

and
(X', YI’]:IT) =D (X", Y",f'"T)

By saturation of F, there is Y such that
(X7 K-F) =AD (-X”, Y”7f")

It follows that
(XY, FT) =4p (X', Y, FT)
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