
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

FRANK B. KNIGHT
Some remarks on mutual windings
Séminaire de probabilités (Strasbourg), tome 27 (1993), p. 36-43
<http://www.numdam.org/item?id=SPS_1993__27__36_0>

© Springer-Verlag, Berlin Heidelberg New York, 1993, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1993__27__36_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


SOME REMARKS ON MUTUAL WINDINGS

FRANK KNIGHT

ABSTRACT. Some further results, doubtless evident to the specialists on windings, are ob-
tained concerning the asymptotics of the mutual windings of n independent planar Brownian
motions, or n planar random walks, about each other

One of the most intriguing results on the asymptotics of planar Brownian motions, in our

opinion, is that of M. Yor (1991), [5], concerning the mutual windings of n independent

planar Brownian motions, with distinct starting points, about each other. This result

is very simply stated, as follows. Let Z1, ..., Zn be mutually independent, planar (or

complex) Brownian motions with distinct starting points k  n. Let 9’~~(t), 0  t,

1  i  j  n, be a continuous determination of the argument of :T ~(Z~-Zi ) about
0 (one can take 2014?r   R for convenience-we note that the partially dependent

Brownian motions do not reach 0(:= (0, 0)), except on the P-nullset, which we may

discard). Then, as t -~ oo, the normalized mutual winding angles 

converge in law to independent standard Cauchy random variables. 
’

This remarkable result seems a bit overshadowed in the treatment of [5], which incorpo-

rates it in a much more general setting. Possibly for this reason, there are several simple

corollaries of the result which seem to have gone unstated. Our ob ject here is to call

attention to the result itself by presenting a few of these corollaries. For these, we rest

largely on the existant literature, and especially on [2], [3], [4], [5], and [6] for the basis of

the proofs.

We cannot resist mentioning, from [6, §7.3], that the problem was originally suggested

by the study of solar flares which travel randomly on the surface of the sun. For a sphere,
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however, it seems impossible to define the mutual windings. A better analogy might be to

a colony of ants whose ant-hill has been removed. Note that, unlike the theory of windings

about fixed points, the mutual windings do not raise the question of dependence on choice

of external points (other than the starting points).

The first corollary consists of extending the result from convergence of random variables

to convergence of processes.

Corollary 1. As t --~ oo, 1  i  j  n, converge to 2n(n - 1)

independent Cauchy processes with parameter a > 0, in the sense of convergence in law

of the finite dimensional joint distributions (it is noted in j4, p. 765] that it is impossible

to strengthen this to the usual convergence in function space).

Proof. The fact that for each (i, j) the process converges to a Cauchy process limit follows

from the general discussion of log scaling limits in [4, Section 8 ; see especially (8.n) and

(8.0)~. However, as that argument is buried rather deeply into [4], we call attention to it

by presenting a direct argument which also yields the independence of the limit processes.

For any process Ut and c > 0 we set := c’1 Uc2t, the Brownian rescaling of U by c.

Transcribing a result of [4, Lemma 3.1] into the notation of [5], we obtain the existence

of " 21 (dependent) pairs of independent Brownian motions wt’~),1  i  j  n,
such that, for 0  ai ...  ak, t > 0 and c,n = (am/2)logt, 1  m  k (suppressing a

t-dependence)

(1.1) 

as t --+ oo where := inf ~t : = a}; w E C(R+, R). Indeed, this is simply (2.a)

of [5], somewhat specialized and with in place of t. On the other hand, from (2.b) of

[5] we have, for each m  k

(1.2) 
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where are independent pairs of independent Brownian motions starting at

0, and the convergence is that of law on C(R+, with the topology of uniform

convergence on compact sets. Ostensibly, the right side of (1.2) depends on m. However,

the dependence is transparent, because if we define to satisfy (1.2) with am =1, ,

then jointly in 1  m  k, we have

(1.3) 03C1i,j,(03C3m)(s) = c-1m03C1i,j(c2ms) ~03B1-1m03B2i,j(03B12ms), as t ~ ~,

with the anaogous fact for Then combining (1.1) and (1.2) we obtain

(1.4) i 1  m  k.

In fact, the passage time Ti not being continuous in the topology of uniform convergence

on compact sets, we need to appeal here to the (sufficiently remarkable) Lemma B.3 of

[4], which says, in essence, that if the law of is fixed (free of (cm))

for each (~, j), (1.2) implies the joint convergence in law of any finite set of measurable

functionals of these pairs. To obtain this condition, we can simply replace 

by Po’~ ), wo’~ )), which preserves ( 1.1 ) since the adjustment is uniformly

small as cm -i oo. We will have further recourse to this lemma below, in treating the

"big" windings. Finally, since

= 

(1.5)
= 

the right side of (1.4) becomes simply Now using the well-known char-

acterization of the Cauchy process as subordinate to the Brownian motion at the

passage times to a of the proof of Corollary 1 is complete.

This result is also an easy consequence of a more general result concerning jointly the

large windings, the small windings, and the local times on the unit circle. Indeed, following

the pattern for Corollary 1, we have only to transcribe Theorems 4.1 and 4.2 of [4] to the



39

present setting. Still further extensions are, of course, possible. However, with a view

to obtaining the analog of Corollary 1 for random walks, we confine our presentation to

these three functionals. Let us recall first the necessary definitions. For each i  j  n,

we can write 9’ t = where, if := then = and

log := This defines the pairs of (l.l). Now we define

the small windings

03B8i,j-(t) := Hi,j(t)01(03C1i,ju  0)d03C9i,ju,

the large windings

> 

and the local time of on the unit circle := 0, Hf),

where L(w, x, t) is the local time of path u? at point x and time t. Here the B~? (t) measure
the increment of during the time when is > 1 (resp.  1), but as far as the

asymptotics as t -~ oo are concerned, it is known that we could replace 1 by any other

positive constant. Note that we are following the notation of [.5], but the result we need

to invoke is given in [4] under entirely different notation. The connection is, that (p, w)
of [5], with or without ornaments, is (,0, B) of [4], whereas 8 of [5] represents, as here, an

actual winding angle. Now the proof of Theorem 4.1 of [4] shows immediately that (1.1)

may be extended to (from here on, we drop all ornaments in p when writing 

(2/logt)03B8i,j±(t03B1m)-03B1mT1(p)0 1(03C1i,j,(cm)u {>0)d03C9i,j,(cm)u ~ 0,

( 1.6) respectively, as t ~ ~, and

Tl(P)) p’ 0.

Actually, since we must replace p by 03C1-03C10 as before, we need to invoke here the continuity
of L(~, a:, ) in (x,t) at x = 0. Now it is only a matter of making a linear change of variables
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in the stochastic integrals to see that, respectively,

03B1m T1(03C1)0 1 (03C1i,j,(cm)u {> 0 ) d03C9i,j,(cm)u 0
= 03B1mc-1mTcm(03C1)0 1(03C1i,ju { )d03C9i,ju,

which connects to through the tightness argument of Williams (i.e. (3.f )

of [4]). The two stochastic integrals and  i  j  ~i, constitute

altogether ~(~ - 1)/2 measurable functionals of the paths of (p‘’J’~~~n~, into R3k,

hence by (1.2), (1.3), and Lemma B.3 of [4], they converge as t --~ oo jointly in law to the

same functionals of It follows that they are mutually independent in the limit

for distinct (i, j ), whereas for fixed (i, j ) and each m, the limit law of the triple

/ (2o~ / log 

is given by Theorem 4.2 of [4]. In particular, that of the big windings (2a,?~1 ~ log t)B+~ (t"m )
is the distribution with characteristic function (cosh )-1, called in [1] the "standard

hyperbolic secant" because it has density )(cosh 2 ~)-1 over R, while that of the local time

is the exponential distribution with mean 2. The corresponding limit processes of (1.7)

and 0, Ty(p)) in parameter a are inhomogeneous (unlike the Cauchy process,

obtained by adding the two cases in (1.7)). These processes are most easily presented in

probabilistic form, as in Table 1 of [4], and we have the following

Corollary 2. As t --~ oo, ~ converges in finite dimensional

joint distribution to the 1) independent processes on R~, ,

1.8 ) , L(~~,0,r~~))j , ~ 0  a. .

Proof. Immediate from the preceding remarks, in view of (1.3), (1.5),and a linear change

of variables.
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We consider now the mutual windings of n random walks on R2. Let 1  m,

1  j  M, be mutually independent, mean 0, unit variance, uncorrelated pairs of real

random variables, identically distributed in m for each j, and let 0),

be the corresponding (independent) random walks on Rz. The winding sequence of S~

about 0, say = ~m 1 a~, -x  ~l~  ~r, was defined by Belisle [1] in the evident way

(in the treatment below, the random walks eventually do not reach 0, so this case may

be discounted). We are concerned here with the sequences giving the windings

about 0 of the random walks ,S,n - 1  i  j  n. Under a boundedness plus mild

regularity condition, it follows from [1] that, for each (i, j), 2~’~~(n)/ log n converges in

distribution, as n - oo, to the same standard hyperbolic secant as does the large winding

of a plane Brownian motion. Of course this is no coincidence, and a strong Brownian

motion approximation is used in the proof, although the details are complicated.

It is natural to suppose that under the same regularity conditions the joint distributions

converge to those of independent hyperbolic secant variables. This is probably true, but

the obvious method-that of strong approximation by Brownian motion-seems to be

technically too complicated even for the case of classical Bernoulli random walk. There

is, however, a fairly general hypothesis, and one which has been frequently made in the

literature, under which the argument is not difficult, and most of it is already in Bélisle

[2]. Namely, we need to assume circular symmetry. (It is hardly surprising, in retrospect,

that this simplifies treatment of windings about 0). Following [2], we introduce the

Hypothesis. For each j  tn, Xj1 has a distribution which is circularly symmetric, with
radial distribution such that ~~~~0} ~ 1 and

f °° r2log2 r j(dr)  ~.

Now we have

Corollary 3. Under this hypotfiesis, let := ~’~~(~t)), p  t. Then as t -~ oo, the
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processes converge in finite dimensional joint distribution to n(n -1)/2 inde-

pendent processes distributed as > 0)dwu, 0  a, where (p,w) is a Brownian

motion on RZ starting at 0.

Proof. We first show that X; - X1 satisfies the same hypothesis, 1  i  j  ~a. Indeed,

since xl and -Xi have the same distribution, independently of X~, and IX; - Xi ~ 
+ we have

2)

 + + ~Xi + > 2)

 l > 1)

 > 1) + > 1)]  oo.

Besides, since Xl) = + d (X i for any rotation d of R2, it is obvious that

Xi has a spherically symmetric distribution. Hence it satisfies the hypothesis.

Now let Wl, 1  i  n, be independent planar Brownian motions starting at 0, and

let Wt’? _ ~(W= - Wi ), 1  i ; j  n. Further, let 1  m, 1  i  j  n, be

independent random varibles on R+ such that R;~ has the distribution 

with = Xi ~~z)-~. We define = inf{t : = and inductively

= inf{t > : |Wi,jt - Wi,jTi,jm| = Ri,jm+1 }. Then clearly the family has the

same joint distribution as ai,j(Sim - Sjm), 1 ~ m, 1 ~ i ~ j ~ n. Let us assume, for

convenience only, that P{X{ = 0} = 0, so that also xl = 0} = 0 (in any case

unless P{XX = 0} = 1, we would have 0 for sufficiently large qn} = 1, and

we could carry out the asymptotics conditionally on S;n - 0). For f > 0, we have

WE,~ ~ 0, 1  i  j  M, and we can apply Corollary 2 to the large windings 8+?(t) about

0 of the family It follows that converges in finite dimensional joint

distribution to > ,where u~’,~) are independent planar Brownian

motions starting at 0. Of course, as far as the large windings is concerned, starting at time
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E > 0 is just a technicality to apply Corollary 2, and the same asymptotics hold starting

att=0.

Finally, as shown in Bélisle [2], for each (i, j), (03B8i,j03B8(i,jm) - 03C6i,j(m))/logm ~ 0 as

m -~ oo, and at the same time 9+~ (T;n~ ) - 8+~ (m) -~ 0. It follows that, for each a > 0,

~ a:(~’’~(t°) - 8+?(ta)) 2014~ 0, and hence Corollary 3 is a consequence of the Brownian

case.
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