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JUMPING FILTRATIONS AND MARTINGALES WITH FINITE VARIATION

J. JACOD and A. V. SKOROHOD

ABSTRACT: On a probability space (il,~,P), a filtration (~t)t>0 is called a

jumping f iLtration if there is a sequence (Tn) of stopping times increasing

to +00, such that on each set the 03C3-fields Ft and FTn coinc-
n

ide up to null sets. The main result is that (~t) is a jumping filtration

if f all martingales have a. s. locally finite variation.

1 - INTRODUCTION

Let (n,~,P) be a probability space. By definition, a (right-continuous)

filtration called a jumping f iLtration if there exists a locali-

zing sequence (Tn)nEDV (i.e. a sequence of stopping times increasing a.s. to

+oo) with TO=0 and such that for all nEDV, t>0:

the 03C3-fields Ft and FT coincide up to null sets on (1)
n

The sequence (Tn) is then called a jumping sequence. Note that it is by no

means unique. Our aim is to prove the

THEOREM 1: A filtration is a jumping f iltration iff all its martingales are

a.s. of LocaLLy f inite variation (here and throughout the paper, martingales

are supposed to be cadlag).

The necessary condition is easy (see Section 2) and not surprising, in view

of the following known fact : consider a marked point process, that is an in-

creasing sequence (Tn) of times, and associated marks Xn taking values in

some measurable space (E,~), and suppose that Tn~~ a.s. Let (Ft)t~0 the

filtration generated by some initial ar-field ~ and the marked point process
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(i.e. the smallest filtration such that ~~~0 and each Tn is a stopping
time and Xn is FTn-measurable). ° Then one knows (see [1]) that (Ft) is a

jumping filtration with jump times (Tn), and if further (E,~) is a

Blackwell space all martingales have a. s. locally f inite variation.

In fact, any jumping filtration is generated by some marked point process,

with a "very large" set of marks: take times Tn as in (1), and (E,g) =
) where (A is an extra point) and g n is the (r-field

of En generated , and is the point of E with coordinates

A, except the nth coordinate which is c~.

So Theorem 1 implies that if all martingales are a. s. of local ly finite

variation, the f iltration is indeed generated by an initial a-field ~0 and a

marked point process.

When the filtration is quasi-left continuous, the sufficient condition is

relatively simple to prove, and some additional results are available: this is

done in Section 3. The general case needs a systematic use of stochastic inte-

grals w. r. t. random measures: some auxiliary results about these are gathered
in Section 4, and the proof is given in Section 5.

2 - THE NECESSARY CONDITION

Assume here that (~ ) is a jumping filtration, with jumping sequence

(Tn). For the necessary part of Theorem 1 it suffices to prove that a uniform-

ly integrable martingale M which is 0 on I and constant on 

for some n is a. s. of locally f inite variation.

Set T=T nand and call G a regular version of the law of the

pair (S,MS), conditional By hypothesis, for each t there is an FT-
measurable variable Nt such that Mt = Nt a. s. on We have the

following string of a.s. equalities (the third one comes from the martingale

property; f urther ( u, x) -~ I is G-integrable f or a.a. ra, because M is

uniformly integrable, and G’(t) = G((t,oo]xlR»:

= ( ~T) = 

= = x l~u~t~ (2)

The right-hand side of (2), which we denote by At, is a.s. cadlag with local-

ly finite variation, as a function of t; further, the left-hand side of (2)
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is a.s. equal to MtG’(t) on the set {T~tS}, so outside a null set we have

MtG’(t) = At for all t with tS. Since Mt =MS for t~S and G’ is non-

increasing, it follows that t ~ Mt is a.s. of locally finite variation if

S=oo or if G’(S)>0 or if G’(S)=0 and G’(S-)>0; by definition of G’, at

least one of these properties holds, hence the result.

3 - THE QUASI-LEFT CONTINUOUS CASE

Recall that the filtration is called quasi-left continuous if FT-=FT (up
to null sets) for all predictable times T, or equivalently if all martingales

are quasi-left continuous. In this case, the proof of the sufficient condition

in Theorem 1 is simple, and provides additional information about the existen-

ce of a minimal jumping sequence. More precisely, we have:

THEOREM 2: a) I f the f iltration quasi-left continuous and a1L mar-

tingales are a.s. of LocalLy f inite variation, then (~t) is a jumping 

tration. Furthermore there is a jumping sequence (Tn)nEDV such that

(i) Tn is totally inaccessible when and TnTn+1 if Tnoo.
(ii) Every totally inaccessible time T satisf ies [T] ~ [Tn] a.s.

(iii) Any other jumping sequence satisf ies a.s.

(iv) Local martingales jump only at the times Tn.
b) If (~t) is a jumping filtration, with a jumping sequence consisting

in totalLy inaccessibLe times, then the filtration is quasi-left continuous.

(iii) means that (Tn) is the unique minimal jumping sequence, while (ii)

means that it is the "maximal" sequence of totally inaccessible times.

Proof. We first suppose all the assumptions in (a).

a) Let 9~ denote the class of all totally inaccessible times. We prove

first that for any sequence (Sn)n~1 in  and any q~N, we have

the random set U = is a.s. finite. (3)

Set V = {(j: there are infinitely many s with Suppose that (3)

fails, that is E := P(V)/2 > 0. Call rc(A) the projection of a subset A of

on n. Define by induction optional subsets Un of U and stopping
times as such: set U1=U; then if Un is known the optional section
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theorem yields a stopping time Tn such that !TT n]~U n (hence T n~J) and

£2 n; then set Un+1 - UnB~Tn~. Clearly VS7r(U ) ) for all

n, hence ~2-
n 

and thus A := satisfies e

and 

Now call Mn the purely discontinuous martingale having a jump of size +1

at time T if T oo, and which is continuous elsewhere. The bracket of M
is and the Mn,s are pairwise orthogonal because they

have no common jumps. Then the series ) 2014 Mn converges in L2 to a square-

integrable martingale whose variation on [O,q1 is bigger than L 1 n 
In particular this variation is infinite , on the set A (since Tn~ ~ 
so P(A)=0 by hypothesis, hence a contradiction and (3) is proved.

~3) Next we construct the sequence (T ) by induction. Set T =0. Suppo-
se that Tn is known, and call the (non-empty) set of all with

, and T>Tn if T n oo. Then define to be the essential infimum of

all T in 3n. . Since , there is a decreasing sequence

in with limit T n+ 1. In view of (3), we must have S p =T n+ 1 for

p large enough (depending on u), a.s.: hence Tn+1~Jn and Tn+1>Tn if T n oo,
and we have (i).

Using (3) once more, we get limn T = +00 a.s. Since any has 

on the set {T>T n } by the def inition of T 
n+1 ,, 

we have (ii). All local mar-

tingale having only totally inaccessible jumps, ( iv) f ol lows f rom ( ii ).

y) Next we prove that (Tn) is a jumping sequence. Let n«N, tz0 and

, and set T=T n , S=T n+1 .. . We consider the martingale NAs =
and also the point process X = with its compensator Y. Since

have

NAs = NAs^S^t , NAS = 1B. ( 4 )

Then M = NA - S NA SlB Tis null on [0,TI and constant on [SAt.oo), and so by

(iv) has only one jump at time S, which is 

Thus, with the predictable process Hu = we obtain M = X’-Y’

with Xs = s0HudXu and Ys = 0 HudYu being the compensator of X’ . Hence

NAs = NATN + s^t0 NAu- dYu a.s. if (5)

Now ’ observing that Ys=0 for s:sT and with denoting the Doléans
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exponential of Y, we deduce NA - NAT = NAT ~(Y)s^t if Similarly N03A9t =
NT if hence

NA N~ NA a.s. on (6)

Note that A’ = {NAT=N03A9T>O} is FT-measurable, and and 

we readily deduce = a.s., hence (1).

8) Now we prove (iii). Let (T’) be another jumping sequence. If (iii)

were not true, there would exist a pair n,p of integers such that

According to a (trivial) extension of Proposition (3.40) of

[1), there is a (O,~]-valued FT, -measurable variable R such that S = 

n

has S=T p 00 on the set Now, S is clearly a predictable time,

and P(Tp Soo) > 0 contradicts the property 

e) It remains to prove (b). So now we assume that (~t) is a jumping fil-

tration, with a jumping sequence (Tn) having for It is enough

to show that if M is a bounded martingale and T is a finite predictable

time, then a.s. on each set A = (1) implies 
= ~T nA up to null sets. Further, P(BBA)=0 if B = so

n

= up to null sets as well. But hence is measurable

w.r.t. the completion of ~T-, and a.s. Since

0 a.s. (M is a martingale and T is predictable), we obtain

dMT 0 a. s. on B. ~

4 - RANDOM MEASURES AND MARTINGALES WITH FINITE VARIATION

1) Let us begin with two auxiliary results, which are more or less known. We

consider two measurable spaces (G,~) and and a positive transition

measure rl(x;dy) from (G,~) into The first lemma concerns the atoms

of maximal mass of r~(x,. ):

LEMMA 3: Assume that a Polish space with its Borel and

that for all xEG. Then if a(x) = yEH):

a) a is ~-measurable.

b) There is a measurable function ~: -~ such that x(x) =

~(x,(~(x))).

c) There is a G~H-measurable set B such that 1 2 ~ ~(x,dy)1B(x,y) ~ 3 4 if
a(x) 4 and ~(x,E)>3 4.
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Proof. There is a bi-measurable bijection 03C6 from H into a Borel subset H’

of [0,1) containing 0, and we set = for every

Borel subset of [0,1). Then y’ is an atom of ~’ ( x, . ) if f where

y is an atom of r~(x,.), with the same mass. Set A(n,m)=[m2 n,(m+1)2 n).

a) The functions ,f n (x) = O~m~2n-1) are measurable and

decreases to a(x), hence the result.

b) Set M n (x) = inf(m: If a(x)=0 then M n (x)=0 and

A(n,Mn(x)) decreases to (0}. If a(x)>0, for all n large enough we have

for all m: either A(n,m) contains exactly one atom of ~’(x,. ) of mass

a(x), or it contains no such atom and thus for n large

enough we have A(n+l,M (x))SA(n,M (x)). Hence for all x the sequence

A(n,M n (x)) converges as to a singleton, say {~’(x)}, with ~’(x)=0 if

a(x)=OEH’ and otherwise (because ~’(x,{~’(x)})=a(x)). Then -

~’ o~p 
1 

satisf ies the requirements.

c) Set U(x) = If and r~’(x,[0,1]) -

1)(x,H) > 3/4 we have 1/2 ~ ~’(x,[O,U(x)]) ~ 3/4. Then B = {(x,y):
answers the question. ~

The second lemma is a variation on the fact that if L 2 (~)SL 1 (~) for a

measure ~,, then is of finite total mass, and it results from discussions

with J. Azema and Ph. Biane.

LEMMA 4: Assume that there is a G~H-measurable partition of GxH

such that ( x,y) ~ 1 for all 1 n. There is a G~F-measurable func-

tion U with and 1 for all xEG, and

’~(x,F) - oo. (7)

Proof. We define by induction the sequence 1’n(x), with and

n+1(x) = inf(m: i:~n(x)i~m ~(x,dy)1Fi(x,y) ~ 1).

Set N(x) = inf(n: and Kn = if

Finally set 8 = Lnl B n 2 and U = (1v28) 
1/2 

~’ ~1 n 1K . °
n

The K ’s constitute a measurable partition of GxF, hence U is measura-
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ble and By construction (x,y) :s 2, so 

1. Further the integral (x,y) is bigger than 1 if nN(x) and

null if n>N(x), while N(x)=oo, so (7) follows..

2) Now we turn to random measures. We fix a filtered probability space

(03A9,F,(Ft),P), and P denotes the predictable a-field on Let E be a

Polish space with its Borel a-field ~, and and An integer-
valued random measure is a random measure p on R+ E of the form

(03C9;dt,dx) = s>0,s(03C9)~E ~(s,s(03C9))(dt,dx), (8)

where y is an optional process taking values in Eutd}, and for which there

is a -measurable partition (G ) ) of Q with E[ s>0 1G n (.,s,~s)]  co. It is

known that there is such a partition with E[ 
s>0 

(.,s,~s)]  1 for all n.

We denote by v the (predictable) compensator of and we use all nota-

tion of [1], Chapter III: in particular if W is a ~-measurable function on

iI we set (with +00 whenever an integral is not well defined):

~t(w) - at 
= t = (9)

and similarly fo W.v, (10)

C~(W)t = 

(W-)2*03BDt + s~t 

(1-a2)(s)2, ! (11) 
CO(W)t = |W-|*03BDt + s~t(1-as)|s. 

Recall that one may define the stochastic integral process of W

w. r. t. (f or a -measurable W) if f one may write W=W’+W", with W’, W"
-measurable and a.s. for all too. Further, if L2

the set of all -measurable functions W such that 

(resp is integrable, we have ([I], Proposition (3.71)): 
co

W~L2 - is a square-integrable martingale 

W~L1  W*( -03BD) has integrable variation over J (12)

Finally, we also set

, at(w) = 

supxEE J = (a>0}, K E = ta>e}. (13)

By Lemma 3, a is a predictable process, and J, Ke are predictable sets.
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Note also that 

Our main aim in this section is to prove the following two theorems, in

which Lib denotes the set of all bounded functions in Li ( i=1, 2), and

1 (Ke) 
(14)

THEOREM 5: Let cE(0,1). There is equivalence between:

a) L2b~L1b.

b) !~1 b equals the set of all bounded ~-measurabLe functions on il.

c) L2b equals the set of all bounded -measurable functions on I.

d) E(FE)  m.

Proof. We begin with some remarks. If then if further 

then as/£ and (1-03B1s)/(1-~). Hence

(1 + 1 ~)F~, F~ ~ (1 + 1 1-~)F~, (15)

and (d) does not depend on es(0,1). In the rest of the proof we take e=1/4

and write Next, apply Lemma 3 to (G,~) - and

(H,~)=(E,~), with the measure we obtain a predic-

table E-valued process § such that at 
= and a ~-measurable set

B such that 1/2~18~3/4 when and a>3/4. Then the sets A =

((w,t,~t(w)): (w,t)EK? and C = are

~-measurable and satisfy for some predictable process ~:

A S KxE, a1K , )C S; 1 C = ~ 1 J’K with if a~3/4, 1 /2~~~3/4 if a>3/4.

This, (14) and the definition of yield

as(1 as) + 8 ~s(1 ~s)’ (lb)

(b) ~ (a) is obvious.

(a) ~ (d). Consider the measure ~ on (~,~) defined by ~(W) -

E[W1*03BD~]. Lemma 4 implies the existence of a -measurable function U with

and and such that implies But (11) yields

oo l = ~(U2), so Ul Jc~L2b by def inition of L2b, hence (a) implies
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Ul Jc~L1b and by (11) again ri(U) = )~]  oo. Therefore

E(1 *03BD)  ~. (17)
Jc o0

Next we consider the measure r~ on defined by T)(H) =

as(1-as)Hsl. If H is a predictable process, (11) yields

I18)

hence by the same argument as above, (a) and Lemma 4 imply that is

E[03A3s~K as(1 as)1  ao. (19)

Finally, with the measure defined by ] (and

(~,C,JBK) instead of (a,A,K) in (18)) one obtains similarly

(20)

Putting together (17), (19) and (20), we deduce (d) from (16).

(d) ~ (b): Let W be a ~-measurable function bounded by a constant 8.

First I ~ ~ s8a, and since ~ F (because 1-asl-a) we have

1  co. (21)

From the definition of A, W can be written as W = U+H1 with U = Wl 
A c

and H a predictable process. We have |W-|~203B4 and |Û|~03B4Ac, and W- =
on A, and 1 A c=1-a on K, so that with V = 

 ~ 203B4 
A 
+ 8(1-a) + 48(1-a) on K (22)

Hence with V as above V*03BD~ = (V1Kc)*03BD~ + 403B4F~, and adding this to
(21) yields ]  oo, hence 

00 Lse 00

(d) ~ (c): This is proved as the previous implication, with V = (W-)2
satisfying 4 - 86~(l-cc) on K instead of (22).

(c) ~ (d): By hypothesis ]  GO, hence (17). We also have

 GO which gives (19), and I  GO which gives (20). []

THEOREM 6: Let There is equivalence between:
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a) All stochastic integrals are a.s. of locally finite variation.

b) We have Ft  oo a.s. f or al l 

Proof. (b) ~ (a). By localization we can assume According to (3.69),

(3.70) and (3.71) of [1), any stochastic integral is the sum of a

local martingale with locally finite variation and another stochastic integral

W’*(jn-~) with W’ bounded. Then (d) ~ (c) of Theorem 5 shows the result.

(a) ~ (b). If (or for all t, (a) and (12) yield
a.s. for all t; there is even a localizing sequence (T ) with

100, so we have locally (a) of Theorem 5. ° However the localizing se-
n

quence a priori depends on W, so we cannot apply (a) =~ (d) of Theorem 5.

Below we assume (a), and we fix t>0. In order to prove a.s. it is

enough by (15) and (16) to prove, with K=K1~4. :

a s ( 1-a ) s  oo, ~ s ( 1-(3 ) s  oo. ( 23 )

We can apply Lemma 4 with (G,~) _ (Sl,~), (H,~) _ and 7)(j,.)
= (1 

J c n *03BD)(03C9,.): there is an F~R+~-measurable function U with 

and 1 and (7). If p(dw,ds,dx) - 

there is a -measurable partition (D ) ) of Q with so W = 

is well defined. We then have W~ ~ p(U2 ~ ~), N and p(U2) =

s 1, hence ) " I = p(W2) ~ l and (a),

(12) and a localization argument imply C ) "  oo a.s. Hence there

is a localizing sequence such that

= =  oo,

hence a.s. on = Q. Then (7) yields 

a.s., which gives the first part of (23).

We apply the same argument with and

(G,~) - (il,~) and (D,D) = (!R ,~ ). Let U be as in Lemma 4. Then set

p(dj,ds) = and H = which has and Then

W = H1A satisfies (18), so ] = 03C1(H2) ~ 1, hence we deduce exactly as

above that 

~ 

a.s., and that  oo a.s., hence 

a.s. and this gives the second part of (23).

The third part of (23) is proved similarly, upon substituting 

with (x,K,A). *
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3) So f ar the measure y was fixed, but here we allow it to change. Denote

by 4 the class of all integer-valued random measures, on all Polish spaces

E, and by ~40 the subclass of all measures in A such that the process a

associated by (13) has identically. If has the compensator v,

let be the space of all local martingales of the form 

PROPOSITION 7: If there exists with At(p’) = At(p).

Proof. a) We start with on the Polish space E, and with compensator v.

As in the proof of Theorem 5, there is a predictable E-valued process ~ with

at 
= ~({t,~ }). Recall the process y in (8), and in (13) set .

The measure p,’ will be on !R xE’, with E’ = We set E~ _
E’+{0394’}, and

(t,0) if t~K and t~E

 if teK and (24)

A’ ’ otherw i see .

This is an optional E-valued process, with which one associates the random

measure p,’ by (8). Clearly and we add a dash to all quantities rela-

ted to : e.g. v’, , a’, , etc...

b) We presently prove that First, with any ~’-measurable function

W’ on n’ - we associate the ~-measurable function f (W’ )(w,t,x) _ 
’

W’(w,t,(x,0)). We have

W’1 
KC 
*p’ = f(W’)1 

Kc 
~p,, W’1 

Kc 
~v’ - f(W’)1 

Kc 
*v (25)

(the first equality is obvious, and the second one follows by taking the

compensators). Thus = 1/2 and = 

at if Next, since for

every finite predictable time T the measure is characterized by
the property v(~T}xA) - and similarly for v’, up to changing
v’ on a null set we can assume that we have identically: 

’

0, 

1 if t~K. (26)
,1 ) ) > = 1-at. 

~ i if t«K. (26)
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Then a. ~ a. =  1/2 if tcK. Hence a.~1/2 for all t, and ~’~~ .

c) It remains to prove Since stochastic integrals w,r,t, ran-

dom measures are characterized by their jumps, it suffices to prove that ifW

is -measurable (resp. W is ’-measurable), we can find a ’-measurable W

(resp. a -measurable W) such that for all t:

= W’(t,’t)1E,(’t)-E,03BD’({t} dy)W’(t,y). ’ 

(27)

-measurable functions are functions of the form

= + with U(t,~) = 0, (28)

where H is predictable and U is -measurable, and the left-hand side of

(27) is then

H,l~(y,) . U(t,y,)l~(y,) - a~ - ~. (29)

’-measurable functions are functions of the form (with (x,i)cE’):

W’(t,(x,i)) = G~ ~(x) + G~ ~(x,i) + with U~(t,~) = 0, (30)

where G, G , G1 are predictable and U , U are -measurable on Q. Due to

(24), (25) and (26), the right-hand side of (27) is then

G0t{03BEt}(t) + U0(t,t)1EB{03B6t}(t) - 03B1tG0t - Û0t if t~K (31)

Gt1{0394}(t) + U1(t,t)1EB{03B6t}(t) - (1-at)Gt - Û1t if t~K

If we start with (28) and if we define W by (30) with G1=0,
K

, 
= 

j 
a simple computation

shows that (29) and (31) are equal. We also have equality between (29) and

(31) if we start with (30) and define W by (28), with H = H and

= U0(t,x)1Kc(t) + [U1(t,x)-Gt1{x~03B6t} ]L.(t). Therefore (27) holds, t

COROLLARY 8: Let ~A. There is equivalence between:

a) All elements of are of locally finite variation.

b) For every ’~A0 such that M( ’)=M( ) we have a.s. for all

too (or equivalently a.s. for all tco).
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Proof. (a) ~ (b): Let with Then (a) ~ (b) of Theorem 6

applied to ’ implies F. 
t 

oo a.s., where F’ is associated with ’

by (14). Since we have Ki/2 0, so a.s. It is also well known

that a.s. for all tco is equivalent to a.s. for all tco.

(b) ~ (a): This readily follows from (b) =~ (a) of Theorem 6 and from the

existence of with 

5 - THE SUFFICIENT CONDITION OF THEOREM 1

For the proof of the sufficient condition in Theorem 1, we need two preli-

minary lemmas. If is given by (8), we set 

LEMMA 9: For any sequence in A0 there exists such that D(n)
= and 

Proof. For each n, is a random measure on the Polish space En, with the
associated process ~n (see (8)). Set E = >r~ = E+(~), and define an

E0394-valued optional process 1 by

f (1t,...,nt,....) if 

t 
= 

1 
 0394 otherw i s e .

The associated measure  belongs to A0 (indeed if x=(xl,x2,..) is an

atom of v((t}x. ), there is at least one n such that and xn is an

atom of vn(~t~x. ), and so sup 1/2). By

construction Finally if M = one easily

checks that M = if W((j,t,(x.,...)) 1 = 

LEMMA 10: Assume that all martingales are a.s. of locally f inite variation.

a) I f ~A0 the set has almost all its R+-sections locall y f inite.

b) There exists such that any other ~’E~40 has D(~’ )SD(~) a.s.

Proof. a) The ~+-section of through cv is locally finite iff

for all too, so the claim follows from Corollary 8.

b) We construct by induction an increasing sequence of stopping

times(Tn)n~0 and a sequence of elements of A0 with the following:



34

Tn~ ~ TnTn+1 a. s. , 

(32)
f or all 1 ~A0, we have ]Tn-1,Tn [~D( ) = ~ a.s. j

We start with TO=0. Suppose that we know (Tn,p,n) with (32) for Set

S(p) - inf(t>Tp: if and Tp+1 - ess (a) im-

plies a.s. on the set A = By Lemma 9 if there is

with D(p") - hence S(p.") - Therefore there

exists a sequence (pn) in ~40 such that S(pn) decreases a.s. to Tp+1.
Applying again Lemma 9, we obtain with = unD(pn), so T p+l
- S(~p+1) a.s. and thus Tp+1>Tp a.s. on A. We have a.s.,

and for any we have a.s., so the last property in (32) is

satisfied for n=p+1.

So far, we have constructed the sequences (Tn), (p.n) with (32). Taking
the measure  associated with the sequence (p.n) in Lemma 9 gives (b). []

Proof of the sufficient condition of Theorem 1. We assume that all martingales
are a. s. of locally f inite variation. Let be the measure constructed in

Lemma 10, and Tn = inf(t: Since a.s. for all too, we have

outside a null set: TO=0, Tn~~, TnTn+1 if Tnoo. We will prove that (Ft)
is a jumping filtration with jumping sequence (Tn). To this effect, it suffi-

ces to prove that f or n~IN f ixed, there exists with
n

(33)

The proof is similar to part (~) of the proof of Theorem 2. We set T=Tn,
S=Tn+1, and consider the martingale NA - ). Let be the

random measure associated with the Jumps of the pair (NA,N~): it is g iven by
(8) with E=IR2B{0} and t = (0394NAt,0394N03A9t), and we know that both NA and N03A9
belong to M(p). By Proposition 7 there is 03C1’~A0 with By Lemma

9 there is p.’E~0 with and D(p,’ ) == while Lemma 10

yields a.s., so in fact D(~c’)=D(p.) a.s. Therefore we also have

Tn = inf(t: a.s., so up to substituting  with jn’ we can and will

assume that 

Set Ms = N S - so MEM ( p. ) . As f or Theorem 2, we have ( 4 ) and ~M -

- Thus S [S] and = for all
tED(p), outside a null set. In other words, if is associated with  by

(8) and if U(w,s,x) - -NA (tj)l.-.... -..., , outside a null set we have
t- 
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for all Since U is -measura-

ble, we deduce from Theorems (3.45) and (4.47) of [1] that, since 

M = W~( p’ -v), with W = U + 

A simple computation shows that W(s,x) = - 1 1-as 1{as>1} NAs-1(T,t^S](s). 
If

F = 1*03BD we then deduce that 

Ms = s^tT NA0393- 1 1-ar 1{
ar 1} 

dF if 

The process Ys = 11 a 1 a 1 dFr is increasing and finite-valued, and

N = N-+M if s2=T, hence (5) holds. Similarly (5) holds for N03A9, so we dedu-

ce (6), and A’ = satisf ies (33).

REMARK: When the a~-f ield ~~ is separable, the proof is much simpler. Indeed,

in this case there is a sequence of martingales which "generates"
(in the stochastic integrals sense) the space of all local martingales. There-

fore if jn is the integer-valued random measure on E = associated with

the jumps of the infinite-dimensional process (Mn) , jM(jn) is the space of

of local martingales, so we do not need Lemmas 9 and 10..
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