The gap between the past supremum and the future infimum of a transient Bessel process
Séminaire de probabilités de Strasbourg, Tome 29 (1995), pp. 220-230.
@article{SPS_1995__29__220_0,
     author = {Khoshnevisan, Davar},
     title = {The gap between the past supremum and the future infimum of a transient {Bessel} process},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {220--230},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {29},
     year = {1995},
     mrnumber = {1459463},
     zbl = {0836.60083},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_1995__29__220_0/}
}
TY  - JOUR
AU  - Khoshnevisan, Davar
TI  - The gap between the past supremum and the future infimum of a transient Bessel process
JO  - Séminaire de probabilités de Strasbourg
PY  - 1995
SP  - 220
EP  - 230
VL  - 29
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1995__29__220_0/
LA  - en
ID  - SPS_1995__29__220_0
ER  - 
%0 Journal Article
%A Khoshnevisan, Davar
%T The gap between the past supremum and the future infimum of a transient Bessel process
%J Séminaire de probabilités de Strasbourg
%D 1995
%P 220-230
%V 29
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1995__29__220_0/
%G en
%F SPS_1995__29__220_0
Khoshnevisan, Davar. The gap between the past supremum and the future infimum of a transient Bessel process. Séminaire de probabilités de Strasbourg, Tome 29 (1995), pp. 220-230. http://archive.numdam.org/item/SPS_1995__29__220_0/

[A] D. Aldous (1992). Greedy search on the binary tree with random edge-weight. Comb., Prob. & Computing 1, pp. 281-293 | Zbl

[KLL] D. Khoshnevisan, T.M. Lewis and W.V. Li (1993). On the future infima of some transient processes. To appear in Prob. Theory and Rel. Fields | MR | Zbl

[KS] S.B. Kochen and C.J. Stone (1964). A note on the Borel-Cantelli problem. Ill. J. Math. 8, pp. 248-251 | MR | Zbl

[RY] D. Revuz and M. Yor (1991). Continuous Martingales and Brownian Motion. Springer Verlag. Grundlehren der mathematischen Wissenschaften #293. Berlin-Heidelberg | MR | Zbl

[ST] Y. Saisho and H. Tanemura (1990). Pitman type theorem for one-dimensional diffusion processes. Tokyo J. Math. Vol.13, No.2, pp. 429-440 | MR | Zbl

[Y] M. Yor (1993). Some Aspects of Brownian Motion. Part II: Some Recent martingale Problems. Forthcoming Lecture Notes | MR | Zbl