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ON THE EXISTENCE OF DISINTEGRATIONS

by
Lester E. Dubins and Karel Prikry

ABSTRACT. Whether, with respect to every partition of the unit square, S, con-
sisting of Borel subsets of S, Lebesgue measure on S admits a countably additive
disintegration, is undeddable with the usual axioms for set theory. Also reported
herein: There are Borel partitions of S with respect to which, Lebesgue measure
admits no proper, integrable disintegrations, not even one that is finitely additive.

Section 1. Introduction and Summary.
One is often concerned with the conditional probability of an event, B, given

(the occurrence of) an event h, P(B/h), where B ranges over a collection 2 of
. events and h ranges over a collection, x, of exhaustive and pairwise incompatible
events. The condition,

(1) P(h/h) = I for all h in 1r,

is sometimes, as in the theory of regular conditional distributions, not required.
Presumably, the forfeiture of (1), an intuitively necessary condition, has been
made in order to accommodate certain requirements of measurability and count-
able additivity.

In the present paper, which joins earlier ones in the study of the existence of
proper disintegrations, Condition (1) is required.

. If (1) holds, and if the integral, or expectation, of P(B/h) with respect to a
probability measure, Q, on x, has the unconditional probability, P(B), for its
value, for all B in a collection B, then P on 13 has a proper disintegration, a
notion more formally defined below. Since the present paper concerns no disin-
tegrations other than those that are proper, "disintegration" will mean "proper
disintegration" .

Principal interest herein is the case in which P is countably additive and
nonatomic, and defined on the sigma-field, B, of all Borel subsets of some un-
countable Borel subset, S, of a complete, separable metric space. Since all such
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are Borel isomorphic (see [P, 1967, Theorem 2.12]), it may be better to fix S to
be the usual coin-tossing space, the unit square, or the unit interval, and P to
be the usual fair-coin distribution, or Lebesgue measure.

If every element of a partition of S is a Borel subset of S, the partition itself is,
in this paper, called Borel. A disintegration, D, is conventional if the partition
x is Borel, and if these two additional usual conditions obtain:

(2) The marginal of P on 03C0 can serve as the integrating measure, Q;
(3) D is count ably additive.

(Some formal definitions are postponed until the next section.)
It is known that there are Borel x for which Lebesgue measure possesses no

proper conventional disintegrations. The set of atoms of the tail sigma-field for
ordinary coin-tossing measure provides such an example; see [DH, 1983]. .

Therefore, interest arises in the existence of disintegrations if Condition (2)
or (3) (or both) is not required, and the purpose of this paper is to report these
two findings:

(4a) There is a Borel partition of the square, S, with respect to which
Lebesgue measure possesses no proper disintegration that satisfies
(2), not even one that is finitely additive.

(4b) The question whether, for every Borel partition of the square, S,
Lebesgue measure possesses a disintegration that satisfies (3), is
not decidable with the usual axioms for set theory.

The question whether, when neither (2) nor (3) is required, there exists, for each
Borel ~r, a disintegration of Lebesgue measure, we do not see how to settle.

Introduce the notation, j3, for the set of P that are countably additive and
nonatomic. Of course, since all such P are Borel isomorphic, a fact corresponding
to (4a) holds for each such P. As it turns out, however, this stronger fact obtains:

(4c) There is a Borel partition of S with respect to which no P in ~,
possesses an integrable disintegration.

Some references containing material related to the present study are: [De,
1930, 1972, 1974], [BR, 1963], [Bo, 1969, p. 39, Proposition 13], [BD, 1975,
Theorem 2], [D, 1977], [SV, 1979, Theorem 1.1.8], [DH, 1983] and [MR, 1988].

Section 2. Definitions and Notations.

03C0-Measurability. Always, 03C0 designates a partition of S, sometimes Borel,
and functions are real-valued, defined on S, and usually bounded. Let ~r* des-
ignate the set of functions whose restriction to each member h of x is constant,
and call such functions 03C0-measurable. Plainly, each x-measurable function can
be identified with a unique function whose domain is ~r, and vice versa. The
useful convention of identifying a set with its indicator, that is, with that func-
tion that is 1 on the set and 0 off the set, is borrowed from de Finetti, and is
used herein. Plainly, the x-measurable sets then constitute a sigma-field, indeed
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a complete Boolean algebra. Equally plainly, a function, f , is 03C0-measurable if,
and only if, the inverse image under f of every set is x-measurable. Calling an
element of 03C0 a 03C0-fiber, it is evident that a set is x-measurable if, and only if, it
is a union of x-fibers.

Proper. A mapping, x, of a collection of functions into 7r* is proper, at a

x-fiber, h, if the value of x f at h depends only on the values of f on h, that is,
if f and f’ are members of the collection that agree on h, then and agree
at h. If K is proper at each h in ~r, then K is proper.

x-Kernels. A x-proper, ~, defined on a linear space, F, of functions, that
includes the constant functions, c, is a 03C0-kernel if 03BA is linear and order-preserving,
and normalized by the condition rc(c) = c for constants c.

For later reference, it is noted here that if an f in F is 03C0-measurable, then
equals f. . Moreover, even if not in F, if f is x-measurable, it is natural to

define to be f There is some convenience in enlarging the scope of ~c to the
linear space, F + ?r*, of all f + g for f in F and g in ?r*, by

(5) 
03BA(f +g) = 03BAf + 03BAg.

= 03BAf + g.

As is easily verified, this is a valid definition, and the enlarged K, too, is a ?r-
kernel. Thus enlarged, K, is idempotent, that is, K,( K) is 03BA, or more fully, 
is 

Expectations. Each x-kernel determines a family of conditional probabil-
ities, or expectations, one for each x-fiber, h, where the expectation correspond-
ing to h is supported by h. If not otherwise stated, an expectation is not required
to be countably additive, so an expectation here is a linear functional, Q, defined
on a linear space of bounded functions, that satisfies for each f, QI is at most
the least upper bound of f. Here, the expectation corresponding to h has as its
domain the linear space, Fh, of f h for f in F, where f h agrees with f on hand
is 0 off h, and the expectation assigns to f h the value of K,f at h. Because ~c is

proper, this is indeed a well-defined expectation.

. Following de Finetti again, [De, 1972, p. 117], probability measures and their
corresponding expectations are designated by the same letter, herein usually by
For Q.

Disintegration. Consider the following two conditions that a pair rc and .

P may satisfy:

(6a) For all f , if is everywhere nonnegative then, for all positive
numbers, c, the P probability that f is less than -~ is 0.

(6b) There is an expectation, Q, defined on the range of K such that

(7a) P f = all f in F;
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or, more briefly,

(7b) P = Qr~.

Proofs, when straightforward, as for the following lemma, are often omitted.

Lemma 1. (6a) implies (6b).
If a x-kernel, K, satisfies (6b), then P has a x-disintegration, and the pair

~r~, Q~ constitutes a disintegration of P, or, more fully, a x-disintegration of P.
Plainly, for any 03BA and P, there is at most one Q defined on the range such

that ~~, Q~ is a disintegration of P. So, when Q does exist, it is appropriate, too,
to say that 03BA is a disintegration of P.

Integrable Disintegrations. If (6b) holds and 03BAf is P-integrable, then P
and Q agree on for then:

(8) = = 

If, for all f in F, is P-integrable, 03BA is P-integrnbIe. In this case, Q and P
agree on the range of r~, and, letting P designate also its restriction to that range,
~r~, P] is a disintegration of P. Such a disintegration is integrable. Recapitulating,

is a P-integrable x-kernel, then 
’

(7*a) P f = all f in F;

or, more briefly,

(7*b) . P = 

Say that a partition 03C0 is P-integrable if, for some 03C0-kernel, 03BA, (7*b) holds.

Proposition 0. For P to have a x-disintegration, it is necessary and suffi-
cient that some extension of P possess an integrable x-disintegration.

Proof. Suppose that P has a x-disintegration, that is, suppose that (6b)
holds. Then, if f and f’ are in F, and if = f’, then P f = P f’, as is evident
by this calculation.

Pf = _ = = 

As is now easily verified, if P assigns to each bounded function of the form 
the value P f’ + P f, then P is a well-defined expectation that extends P. And if

assigns to f’ + the function + then R is a well-defined 03C0-kernel that
extends K. It is then easily verified that for g = f’ + , g = that is,
P possesses an integrable disintegration. The converse is immediate from this
easily verified fact.
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Fact. If P is an extension of P, and P has a x-disintegration, then so does
P.

Pmof. Express P as Then let x be the restriction of ic to the domain
of P, and let Q be the restriction of Q to the range of ~c. It is then a triviality
to verify that P = 

Section 3. Universally Nonintegrable Partitions.

Theorem 1. There exist Borel partitions with respect to which no non-
atomic, countably additive probability, P, possesses an integrable disintegration. .

The proof of Theorem 1 requires some preliminaries. ,

Call ~r connective if, for any two disjoint uncountable Borel sets, there is a
03C0-fiber that intersects each of them. Call x binary if each of its fibers has at
most two elements. A significant step towards the proof of Theorem 1 is this
Proposition.

Proposition 1. There exist binary x that are connective.

The proof of Proposition 1 is of a type that has frequently been used, at
least since Felix Bernstein, [B, 1907].

Proof of Proposition 1. Index the pairs p of uncountable Borel sets by the
ordinals less than the minimal ordinal whose cardinality is the continuum, and
let a and ~3 designate such ordinals. Let D be an enumerably infinite subset
of S. Suppose that for some a, and for each a  ~3, there is an ha consisting
of two elements, that satisfies: ha is a subset of the union of the pair, pa; ha
intersects each element of pa and, for the a  ~3, the ha are disjoint, and also
disjoint from D. As is well-known, and as follows from [P, 1967, Theorem 2.8],
each uncountable Borel set has the continuum as its cardinality, the process can
continue, and the ha become defined for all a less than the continuum. The

. subset of S not covered by the ha, say, V is infinite, for it includes D. Partition
V arbitrarily into sets, each of which has two elements, and let x consist of this
partition together with the ha . Plainly, such a x satisfies the lemma. D

[As is evident, the proof of Proposition 1 made use of the axiom of choice.
The question arises whether it may be possible to find a proof that does not rely
on that axiom. We believe that the answer is negative, and that that can be seen
to follow from certain work of Solovay [S, 1970]. Also, from what Dellacherie has
kindly told us, a negative answer perhaps follows from certain work of Sierpinski
published in Fundamenta, but we do not know of a precise reference.]

In the interests of brevity of exposition introduce a definition. If no non-

atomic, countably additive, probability, P, on S, possesses an integrable ?r-

disintegration, call 03C0 universally nonintegrable. So, Theorem 1 asserts the exis-
tence of universally nonintegrable partitions.

Proposition 2. Binary connective x are universally nonintegrable.

Plainly, binary x are Borel, so Theorem 1 follows immediately from Propo-
sitions 1 and 2.
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Preliminary to the proof of Proposition 2, call ar ubiquitous if every uncount-
able Borel set includes a ~-fiber. Of course, Proposition 2 follows from these two
facts:

Proposition 2.1. Binary connective x are ubiquitous.

Proposition 2.2. If 71" is both connective and ubiquitous, then it is univer-
sally nonintegrable.

Prnof of Proposition 2.1. Let B be an uncountable Borel set. Let U and V
be disjoint, uncountable Borel subsets of B, which of course exist. Since x is

connective, there is a 03C0-fiber, h, that intersects U and V. Since every fiber has
at most two elements, this h has two elements, and is a subset of the union of
U and V, and hence of B. D

The next goal, a proof of Proposition 2.2, requires some preparation. First,
two definitions: A subset of S is thin, if each of its Borel subsets is countable.
A real-valued function, g, defined on S is unwavering if, there is a constant, c,
such that, for each countably additive, nonatomic, P, for which g is integrable,
g assumes the value c with P-probability 1.

Lemma 2. For a set to be thin it is necessary and sufficient that it have
. 

measure zero for every coun tably additive, nonatomic P for which it is measur-
able.

Proof. Each countably additive probability, P, on a complete separable met-
ric space, is tight, see [P, 1967, Theorem 3.2]. Consequently, each P-measurable
set A of positive P probability includes a compact and, therefore, Borel, K, of
positive probability. Since P is nonatomic, K is uncountable. So K, and hence
A, is not thin. Summarizing, the condition is necessary. To establish sufficiency,
suppose that A is not thin, that is, that it includes an uncountable Borel B.
As is well known, see, for example, [P, 1967, Theorem 2.8], such a B includes
a subset, K, homeomorphic to the usual coin-tossing space. Therefore, some
countably additive probability, P, is supported by K, and hence by B and by
A. D

Lemma 3. Each of the following conditions on x implies its successors.

(a) ~r is connective.

(b) For every ~-measurable set, either it, or its complement, is thin.

(c) Suppose that V is a x-measurable set. Then, either V is thin and
(therefore ) a P-null set for all P in fl3 for which it is measurable, or
its complemen t is.

(d) Every real-valued, x-measurable function is unwavering.

Proof. The arguments that (a) implies (b) and that (b) implies (c) are
straightforward and omitted. So suppose (c), and let g be real-valued and ?r-
measurable. It may be supposed that, for some P in is P-integrable, for
otherwise, g is clearly unwavering. Fix a positive number e, and partition the
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real line into half-closed intervals, I, of length s. The inverse image of I under
g, say V, is both 03C0-measurable and P-measurable. By (c), either it is thin and
PV = 0, or its complement is thin and PV = 1. Since the I are disjoint, so are
the V. Therefore PV = 1 for at most one V. Since P is countably additive,
PV cannot be 0 for all V. So the complement of V is thin for precisely one V,
and, for that V, PV = 1. Consider the I corresponding to that V and label it
I(~). It is now routine to let ~ be of the form 1/k where k is a power of 2, and
to verify that the corresponding sequence of I have as their intersection a single
number c. So g is unwavering, and (d) holds. D

Remark .1. Were it useful for the main purposes of this paper, Lemma 3
could have been stated in a stronger form. For each of the four conditions are
equivalent to the others. To verify this, it suffices to verify that if (a) does not
hold, neither does (d). So, suppose that (a) does not hold. Then there exist
disjoint, uncountable, Borel sets B and C with the property that each x-fiber
that intersects B is disjoint from C. So the complement, N, of the smallest
x-measurable set, M, that includes B, includes C. There is a P in ~3 for which
PB and PC are 1/2. For such a P, M and N are P-measurable, and the 03C0-

measurable function, g, that is 1 on M and -1 off M is P-measurable. Plainly,
g is not unwavering. So, (d) does not hold.

Lemma 4. If 03C0 is connective, then, for all 03C0-kernels, 03BA, and bounded, Borel
f, is un wavering.

Proof. Apply Lemma 3.

Turn now to the property of being ubiquitous.

Let the ~ interior of a set, C, be the largest x-measurable set included in
it, and designate it by 03C0iC. It is obvious that CB03C0iC includes no x fibers.

Lemma 5. . Suppose x is ubiquitous, C is a Borel set, and P is Then,
if the 1r-interior of C is a P-null set, so is C. .

Proof. Express C as the union of two sets, its x-interior and the remainder
of C, say, D. Since, both C and its 03C0-interior are P-measurable, so is D. Since
D includes no 03C0-fibers and x is ubiquitous, D includes no uncountable Borel set.
Therefore, D is a P-null set. Since C is the union of two P-null sets, it, too, is
P-null. D

Lemma 6. Suppose x is connective and ubiquitous. Suppose, too, 03BA is
a 03C0-kernel, and f is a bounded, real-valued, Borel function. Then, there is a
constant c such that, for all P in j3 for which 03BAf is P-integrable, f = c with
P-probability I. .

Proo f. By Lemma 4, there is a c such that, for all described P, ~ f = c on a
set of P-probability 1. . Let c be a positive real number, and let C be the event
that f is at least c + ê. Then, on any x-fiber included in C, and, therefore, on
the ~-interior of C, Kf is at least c + s. So, the x-interior of C is a P-null set.
Then, by Lemma 5, C, too, is a P-null event. Likewise, so is the event that f is
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at most c - c. Plainly, since P is countably additive, f = c, with P-probability
1. . D

Since Proposition 2.2 is an immediate consequence of Lemma 6, Proposition
2 has been proven. Therefore, the proof of Theorem 1 is complete.

This special consequence of Theorem 1 is recorded here.

Corollary 1. There is a Borel partition of the unit interval with respect
to which Lebesgue measure possesses no integrable disintegration, not even one
that is finitely additive.

Section 4. Countably Additive Disintegrations.
There is more than one notion for an expectation, E, on a linear space, F, to

be countably additive; see [DR, 1984]. Herein, F includes only Borel functionss,
and attention is restricted to the usual, and strongest notion in which E is
the restriction to F of the usual L1-space of some countably additive probability
measure on B. A kernel, ~c, is countably additive if, for each h, the corresponding
expectation is countably additive. A disintegration is countably additive if both
r~ and Q are countably additive.

Notice that, as defined, count ably additive disintegrations need not be con-
ventional. For a disintegration of P to be conventional, in addition to being
countably additive, it is required to be P-integrable.

The purpose of this section is to prove:

Theorem 2. The assertion that, with respect to every Borel partition, x,
of the unit interval Lebesgue measure possesses a countably additive disintegra-
tion, is undecidable with the usual axioms for set theory.

The usual set of axioms of set theory, designated by ZFC, are the Zermelo-
Fraenkel axioms, together with the axiom of choice.

Of course, the undecidability of an assertion is equivalent to the consistency
of it, as well as of its negation, with ZFC. So Theorem 1 is equivalent to the
conjunction of two propositions, the first of which is:

Proposition 3. It is consistent with the usual axioms of set theory that
Lebesgue measure on the unit interval possesses a countably additive 03C0-disinte-
gration for every Borel 03C0.

Recall two notions: If K is a collection of disjoint non-empty sets, then a
K-selection is a set included in their union that has a single point in common
with each of the members of K. In particular, a x-selection is a subset, V, of S
that contains one, and only one, point of each 03C0-fiber. And the x-saturation of
a set, C, is the smallest x-measurable set that includes C.

Lemma 7. Each of the following conditions on P and x implies its succes-
sors.

(i) If a set of x-fibers has cardinality less than the continuum, then
each Borel subset of its union is a P-null set.
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(ii) There is a x-selection, V, of outer P-probability I. .

(iii) There exists a countably additive, x-disintegration of P.

Proo f. (i) --~ (ii). Assign to each ordinal a of cardinality less than the
continuum a Borel set, Ba, of positive P-probability so that all Borel sets of
positive P-probability are listed. Fix a, and suppose that for each ~3  a, there
is assigned a point x03B2 in B03B2, and let hp be the 03C0-fiber containing zg. Plainly,
the set of these fibers for ~Q  a has cardinality less than the continuum. So, by
(i), Ba contains a point, xa, not in any fiber, h~, for ~3  a. Let V be the union
of the set of these Za with any selection from the set of fibers complementary to
the set of ha. Plainly, V satisfies (ii). .

(ii) ~ (iii). Let 03BA be the 03C0-kernel that assigns to the Borel set, B, the
indicator of the x-saturation of VB, the intersection of V with B. Equivalently,
It associates to the 03C0-fiber, h, the one-point dirac delta measure at the singleton
V h. Plainly, rc satisfies (6a) for V has outer measure 1. Hence, by Lemma 1, (6b)
holds. Verify that the set of x-saturations of VB, B Borel, is a sigma-field, say
V, and each 03BAf is measurable with respect to that sigma-field. There remains
only to verify that Q is countably additive on V. For this purpose, verify that V
is isomorphic to the sigma-field, W, of subsets of V of the form VB (which holds
for any selection V). To conclude that Q is countably additive, one need only
observe that = PB = P*(VB) (where P* denotes P-outer measure),
for V has outer measure 1. For this shows that Q is isomorphic to the restriction
of the outer measure P* to W, which, as is well-known, is countably additive.

Proof of Proposition . As is easily verified, it suffices to consider each
of whose elements is a Borel set of Lebesgue measure zero. The continuum

hypothesis then implies (i) of Lemma 7. For the union of countably many sets
of measure zero has measure zero. Therefore, (i) is consistent with the usual
axioms of set theory, and, in view of Lemma 7, so is (iii). . Q

Remark J§. Proposition 3 has wider validity than asserted. For the argument
works for all countably additive P. Furthermore, all restrictions on the nature
of x can be removed, at the expense of some complication of the proof.

Remark 9. The role played by the continuum hypothesis in the proof of
Proposition 3 could have been played by a weaker axiom, an axiom known as
Martin’s axiom. For this axiom, too, is strong enough to imply (i) of Lemma 7.
One formulation of Martin’s axiom is: If a compact Hausdorff space, H, admits
no disjoint collection of nonempty open sets, other than countable collections,
then the union of fewer than a continuum of closed subsets of H, each of which
has no interior, has no interior. (See [K, 1983, Theorem 3.4, p. 65].)

Proposition 4. It is consistent with the usual axioms of set theory that
there be a Borel partition of the unit interval with respect to which Lebesgue
measure has no countably additive disintegration.

Several lemmas are needed.
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Lemma 8. For any 03C0 and any countably additive x-kernel, K, the sigma-
field generated by the functions KB for B in B, say M (M for marginal sigma-
field) is countably generated. Moreover, x is the set of atoms of M.

Pmof. By the monotone class argument, the image under r~ of a countable
boolean algebra that generates B generates M, so M is countably generated. To
see that x is the set of atoms of M, notice first that 7T is a subset of M, for
03BAh = h for all h in 03C0. Each 03C0-fiber is an M-atom, for none of its proper subsets
is a member of M. There are no other M-atoms, for the union of these M-atoms
is the entire space, S. D

Recall certain terminology and facts: An atom of a sigma-field, U, is a

minimal element of U; an atom of a probability, P, on U, is a set of positive
measure that has no subsets of smaller positive measure. Let a be the sum of
the measures of the atoms. If a is 1, the measure is atomic, and, otherwise, P
is a unique convex combination of an atomic and non atomic probability. The
next lemma is well-known.

Lemma 9. Suppose that A is an atom for a countably additive probability
measure, P, defined on a sigma-field, U. Then, ifU is countably generated, A is
represented by an atom ofU.

For the convenience of the reader, a less well-known fact in the literature
[GP, 1984, Theorem 9.2] is reformulated as the next lemma, and a proof is
provided. A definition facilitates the formulation. 

’

A cardinal number is small if every set of reals of that cardinality has
Lebesgue measure 0, or, as is equivalent, no set of positive outer Lebesgue mea-
sure is of that cardinality.

Lemma 10. Every countably additive, finite measure, Q, defined on a
sigma-field of subsets of a set, H, of small cardinality is atomic. Consequently,
only the Q that vanishes identically has no atoms.

Proof. What must be seen is that the non atomic part of Q vanishes. If it did
not, then, by renorming that part, and changing notation, it may be assumed
that Q itself is a nonatomic probability measure. Then there exist a sequence of
independent events of probability 1/2. The indicators of these events provide a
sequence of independent zero-one valued functions, which determine a mapping,
p, of the probability space, H, into fair coin-tossing space. Let C be any Borel
subset of coin-tossing space that covers the range of p. Plainly, its inverse image
under cp, being H, certainly has measure 1. Since p is measure-preserving, C
has probability 1 (for the fair coin-tossing measure). So the range of 03C6 has outer
probability 1. Therefore, the range is not of small cardinality, so H certainly is
not of small cardinality. This contradicts the hypothesis. D

Lemma 11. Suppose that the cardinality of a partition, x, is small, and
P is countably additive, with or without atoms, and has a countably additive
03C0-disintegration. Then the sum of the P-probabilities of the 03C0-fibers is 1 .
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Proof. For any 03BA, rch = h. So Qh = QK.h = Ph, and it suffices to verify that
the sum of the Qh is 1. By Lemmas 8 and 9, this sum is the same as the sum of
QA over all Q-atoms A. Since Q is, in effect, defined on a sigma-field of subsets
of 03C0, and 03C0 is of small cardinality by hypothesis, Lemma 10 applies to complete
the proof.

Lemma 11 has a corollary.

Corollary 2. If 03C0 is a partition of small cardinality all of whose fibers are
of P-probability 0, then P possesses no countably additive x-disintegrations.

Prnof Proposition. In the Cohen model for the negation of the continuum
hypothesis, there is a set ~r, of small cardinality, whose members are disjoint
Borel null subsets of the unit interval, I, that covers I, as is proven in [K, 1984].
Therefore, the existence of such ~r is indeed consistent with the usual axioms for
set theory. This, together with Cprollary 2, completes the proof.

Since Theorem 2 is nothing other than the conjunction of Propositions 3
and 4, its proof is complete.
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