@article{SPS_1995__29__260_0, author = {Eisenbaum, Nathalie and Kaspi, Haya}, title = {A counterexample for the {Markov} property of local time for diffusions on graphs}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {260--265}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {29}, year = {1995}, mrnumber = {1459467}, zbl = {0849.60076}, language = {en}, url = {http://archive.numdam.org/item/SPS_1995__29__260_0/} }
TY - JOUR AU - Eisenbaum, Nathalie AU - Kaspi, Haya TI - A counterexample for the Markov property of local time for diffusions on graphs JO - Séminaire de probabilités de Strasbourg PY - 1995 SP - 260 EP - 265 VL - 29 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1995__29__260_0/ LA - en ID - SPS_1995__29__260_0 ER -
%0 Journal Article %A Eisenbaum, Nathalie %A Kaspi, Haya %T A counterexample for the Markov property of local time for diffusions on graphs %J Séminaire de probabilités de Strasbourg %D 1995 %P 260-265 %V 29 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1995__29__260_0/ %G en %F SPS_1995__29__260_0
Eisenbaum, Nathalie; Kaspi, Haya. A counterexample for the Markov property of local time for diffusions on graphs. Séminaire de probabilités de Strasbourg, Tome 29 (1995), pp. 260-265. http://archive.numdam.org/item/SPS_1995__29__260_0/
[A] On Dynkin's Markov property of random fields associated with symmetric processes". Stoch. Proc. Appl. 15, 193-201. | MR | Zbl
(1983). "[D] Local times and quantum fields". Sem. on Stoch. Proc., 1983, Birkhauser, 69-84. | MR | Zbl
(1984). "[E] Dynkin's isomorphism theorem and the Ray-Knight theorems". Probability Theory and Related Fields 99, No. 2, 321-335. | MR | Zbl
(1994). "[EK] A necessary and sufficient condition for the Markov property of the local time process". Ann. of Probab. 21, No. 3, 1591-1598. | MR | Zbl
and (1993). "[K] Random walks and a sojourn density process of Brownian motion". Trans. Amer. Math. Soc. 109, 56-86. | MR | Zbl
(1963). "[L] Problèmes liés aux temps locaux du mouvement Brownien: Estimation de norme Hp, théorèmes de Ray-Knight sur le tore, point le plus visité". Thèse de doctorat de mathématiques de l'Université Joseph Fourier.
"[R] Sojourn time of a diffusion process". Ill. J. Maths. 7, 615-630. | MR | Zbl
(1963). "[S] On the Ray-Knight property of local times". J. London Math. Soc. 31, 377-384. | MR | Zbl
(1985). "[W] Excursions and local time". Temps Locaux, Asterisque 52-53, 159-192. | Numdam
(1978). "