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CONTINUOUS MAASSEN KERNELS AND THE INVERSE OSCILLATOR

Wilhelm von Waldenfels

Institut fur Angewandte Mathematik
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Im Neuenheimer Feld 294

D-69120 Heidelberg

Dedicated to P.A. Meyer to his 60th birthday

Summary: The quantum stochastic differential equation of the inverse oscillator in a heat bath of
oscillators is solved by the means of a calculus of continuous and differentiable Maassen kernels. It is
shown that the time development operator does not only map the Hilbert space of the problem into itself,
but also vectors with finite moments into vectors with finite moments. The vacuum expectation of the

occupancy numbers coincides for pyramidally ordered times with a classical Markovian birth process
showing the avalanche character of the quantum process.

§ 0. Introduction
The quantum mechanical oscillator has the Hamiltonian where b and b+

are the usual annihilation and creation operators. The inverse oscillator has the Hamiltonian
- Coupled to a heat bath the inverse oscillator has the Hamiltonian

- 

As this Hamiltonian is not bounded below it cannot describe a real physical system;
it can be used, however, to approximate the initial behavior of real physical systems, e.g. in
the case of superradiance, at it is shown in § II.1 [2], [3], [11].

Using the interaction representation and singular coupling limit we arrive to the
quantum stochastic differential equation for the time development operator

(1) dUt,s = (-ibdat - 

This is a well-known equation, already mentioned in one of the early papers of Hudson and
Parthasarathy [5].
The mathematical problem is that the coefficients b and b+ are unbounded operators. We
treat it in considering the matrix elements

(2) 

as Maassen kernels. Here again a problem arises as the kernels are not bounded in the
Maassen sense. Due to the simple algebraic structure, however, all convolutions of these
kernels are allowed.
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In chapter I we reconstruct the theory of Maassen kernels without the exponential
bond used by Maassen. We introduce continuity and differentiability in a slightly different

way and obtain an elementary theory which uses only calculus and Lebesgue integrations.
We regain Maassen’s theorem connecting differentiation and integration similar to the
fundamental theorem of calculus and Maassen’s and Robinson’s general Ito-formula [7],
[8], [9], [10], [12]. From there one can obtain several Ito tables for adapted processes. We
have the usual Ito table for forward adapted processes

(3) da da;
da 0 dt

da; 0 0

For backward adapted processes we obtain

(4) da da7
da 0 -dt

da~ 0 0

and if one of the processes is forward adapted and the other backward adapted we have

(5) dat da;
da 0 0

da7 0 0.

In chapter II we investigate the special structure of the inverse oscillator in a bath.

Due to the quadratic Hamiltonian the Heisenberg equations are linear and can be solved

easily. In 1I.2 we calculate the Heisenberg equations going back to the finite heat bath and

performing the singular coupling limit. We obtain

(6) b+t,s=U+t,sb+Ut,s = e(t-s)/2b++i t0 e(t-t’)/2 dat.

We see that for t ~ ~

(7) e-t/2b+t,0 ~b++it0e-t’/2 dat’ = B+.

As B and B+ commute we can interpret them as classical quantities which might be

understood as the macroscopic quantities after amplification [2]. Assume for t = 0 as

statistical operator the vacuum for the bath and the density matrix p for the b and b+,

then B and B+ are distributed with respect to the classical probability law given by a

smeared out Wigner transform of p.
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It is easy to solve the stochastic equation (1) by Maassen kernels. We obtain a

uniquely determined matrix

p,1,2,...

and are left with the problem to show that this is the matrix of a unitary operator Ut,s. By
assumption

t -~ (mlut,sln)

is forward adapted. From the explicit formula one concludes that

s -~ (mlut,sln)

is backward adapted. Using the differentiation calculus and (3), (4) and (5) we conclude
that in matrix form

Ut,s * us,r = Ut,r

for r  s  t (Proposition 2 of § I1.4). Let p = p(b, b+) be a polynomial in b and b+,
then by differentiating with respect to t we obtain

(8) 5~,~ * 

where bt,s g is given by (6) and by differentiating with respect to s

(9) ut,s * b~~~ * 

with 

= e(t-s)/2 b+b~,~ -1 i j e~t-t’>~2dat~.’ ~s
The equations (8) and (9) hold for It-sl  1. Choosing p = 1, one can deduce the unitarity
of Ut,s. But there is more. Call A the operator of the total number of particles in the Fock
space

(A~)(~) _ 

then there exist constants Ck, rk such as

(A + 
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and

Ut,s (A + 
are

(10)  Ck + bb+)k.

From there we establish a unitary evolution Ut,s s for all t and s; furthermore Ut,s maps
the space 

Dk = {03BE : ~( +bb+)k/2 03BE~ ~}

onto itself (Theorem 11.5). The Heisenberg equations can now be established in a rigorous
way.

Call X(t) the classical Markov process on N which is able to make only jumps of
+1 and has the transition probabilities

P(X(t+dt) = n+1 I X(t) = n) = (n+l)dt
P(X(t+dt) = n I X(t) = n) = l-(n+l)dt,

then X(t) and 
’

N(t) = Ur,o b+b Ut,o

have the same marginal distributions and moments for pyramidally ordered times. For non

pyramidally ordered times there are differences. To establish this result was one of the

major difficulties of the paper. We had to use (10) heavily.

I. Continuous Maassen kernels

§ 1.1. Measurable kernels

We follow Maassen’s original notation [9]. Let I c R be an interval. Denote by Q

(I) the set of all finite subsets of I.

= U Qn(I),
n=0

Qo(I) = { tb } ; I Q(I) : #(~ = n} }

where #(0 denotes the cardinality. can be identified with the subset { (tl, ..., tn) E
 ...  } and inherits the structure of a measure space from In. Let do denote the

measure on Q(I) which has ø as an atom of measure 1 and which equals the Lebesgue
measure on for n = 1, 2, .... So

+ dtl ... dtr, f({ti, ..., ~ n=
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A kernel is a measurable function

x : Q(I) x Q(I) -~ C.

Two kernels x and y are called multipliable if

E X i I (x(a, ~i + Y) I + ~y,  ~

aea 

for almost all E 03A9(I). The sum w + 03C9’ of two finite subsets of I is equal to 03C9 u 03C9’
if c~ n 0)’ = 0 and is not defined if c>J n co’ ~ 0. So the integrand is defined almost
everywhere.

If two kernels are multipliable their product x * y is defined by

(x * Y)(6~ ~) _ ~ ~ i +’Y) 1 a) + ~y, ~ 1 ~i).
ac6 03B2~03C4

For n factors we have the formula

(xl * ... * 03C4) = 
al+ 

... dy2 d03B313 ... dYl n dY23 ... dY2n ... 

03B21+ ... + 

x2(a2+~1,2~ F’2+~23+ ... +’~2~n)

... 

... + ~n

n

= E ... f n ~ ~i+~i,i+1’~’...+’~i , n).
1-ij_n 1=1 I

~ 1+ ... + 

So the product ... * xn exists if the product * ... * IXnl given by the formula
above is finite a.e. and if that is the case the product is given by the formula.
It is easy to prove that e.g.

(xI * ... * Xn) * = xl * ... *Xn * Xn+1

using the 03A3-Lemma [6] :
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f(a 1,... ... ... , 6 d ).

A vector ç is a measurable function Q(I) ~ C. The application of a kernel to a
vector is given by

(X * 03BE)(03C9) = 03A3 d03C4 x(03C3, 03C4)03BE((03C9 B03C3) + 03C4)

if this expression exists.
Defme

~(6~ i) _ ~(~)s~(’~).
Then

(x * ~)((0, 0) = (x * ~)(~)~

This reduces the multiplication x * ~ to the multiplication of kernels. Denote

xT(6, r) = x(T, 6).

Let § be a vector, define

(03BET* x)(03C9) = d03C303BE((03C9 B 03C4) + 03C3) x (03C3, 03C4) = (* x)(~, 03C9)

v

with § (6, ~) = b~(6)~(’~)~

Let 11 be another vector, define

~T * ~ = j (~ * ~).

One has the usual rules

(x * y)T = yT * xT

Define as usual

X+ _ ~’~ ~+ _ ~T~ .

where x is the complex conjugate.

§ 2. Introducing continuity
. At first some notations. Let S be a set, A c S and B c Sd, then

A(x)B = {(a,b) : ae ..., bd) E B : ..., a ~ bd}.
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So

= A(x) ... (x)A = { {al, ..., aa} E Ad : for i ~ j } .
If A c P(S), B c P(S)d, where P(S) is the set of all subsets of S, then

A(x)B = {(~ P): a e = 
..., Pd) e B : a n (Pi u ... u P~) = 0)

and

= A(x) ... (x) A = { al, ..., aa) E Ad : ai n oci = ~ for i ~ j }.

If A c S and B c P(S)d, then

A(x)B = {(a, = 
..., P~) ~ B : a ~ Pi u ... u R~}. °

We introduce in {(ti, ..., tn) E In : tI  ...  } the usual topology and define so
a topology on Q(I). We denote by C(I) the set of continuous functions Q(I) --~ C such
that for § E C(I) and all p

lIçllp = sup  °°.

inherits its topology from Q(1)2. A continuous kernel x is a continuous function
on S2(I)~2~, such that

~X~p,q = sup |x(03C3, 03C4)|  ~.

Denote by Co(I) the subspace of C(I) of all § such that ~(co) = 0 for all w with #c~

bigger than some bound depending on !;.
Remark 1: The assumptions and IIxllp,q are essentially integrability
conditions and can be replaced by much weaker ones.
Proposition 1: Let I be a finite interval of length L. Let x be a continuous kernel in
Q(I)C2). Then for ~E Co(I) the product x * ç is defined and

is a mapping from Co(I) ~ C(I) such that

~X *03BE~p ~ (p q) Lr r!~X~q,r~03BE~p-q+r.
q=0 r=0 

q .

The sum is finite as vanishes for r sufficiently big.
Proof: Recall

(x * ~}(~) _ ~ d~ x(a,~)~(~+~)

and put Choose A, B c f 1, ..., p} with A+B = { 1, ..., p} and a =

03C9A = {03C9j :j~ A} and 03B2 = 03C9B. Then with 03C4 = {t1, ..., tr}
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(x * 03BE)(03C9) = t1...tr X(03C9A;{t1,...,tr} )03BE(03C9B + {t1, ...,tr})dt1 ... dtr

where R is some integer. Call

~~ A, B) = X t) + T)

function

x E ~ M, A, B)

is continuous for 03C4 ~ 03C9 = ~, hence measurable and bounded by

For the sets ~An~ ~ and ~n~ -~ So

A, B) ~ 0), A, B)

for 03C4 n co = ~, that means a.e. By Lebesgue’s theorem

A, B) d~ ~ co, A, B).

From there one gets the result immediately.
Definition: We say a pair (x,y) of kernels has the finite product property (FP) if

~l + ~) Y (a2 + ~~ ~2)

vanishes for #y sufficiently big for fixed #ocl, #oc2, 
Proposition 2: Let I be a finite interval of length L. Let x and y be continuous

kernels on I with the finite product property (FP). Then x * y is a continuous kernel on I.
Proof: Assume (o, T) E Qp(x)Qq. Then

(x * y)(03C3, 03C4) = 
A1+A2={1,...,p} r=0 

#03C9=r
d03C9 Zr(03C9; 03C3, 03C4, A1, A2, B1, B2)

B1+B~{ 1,...,9}
with

0, T, Ai, A~, Bi, B2) = + + (B, 

If o = {sl, ..., then = {si: i E } etc. Now is continuous

for 03C9 n (o u 03C4) = ~, hence it is measurable. Moreover it is bounded. Let ~ o and

~ ~, then 6An1 -~ etc. and

o~, Ai, A~, B~) ~ a, T, Ai, A~ B~)



125

for c~ n (o u r) = 0. As the integrand stays bounded, we have continuity of the integral
and hence of the sums.

Remark 2: Assume instead of (FP) that

Cp’,p";q’q"=Lr r!~X~p’,q’+r~y~p"+r,q"  ~
r-~ r. ° 

~~~~~P’,q’+r ~~Y~~P"+r,q" ~ "

for all p’, p", q’, q". Then x * y exists, is continuous and

~x*y~p,q~  p!q! p’!p"!q’!q"!Cp’,p",q’,q".

Remark 3: We say that a kernel x has Maassen’s property if
c Mp+q

where c and M are some constants. If x and y are continuous kernels on a finite

interval and have Maassen’s property, then x * y is a continuous kernel on I and has

Maassen’s property. For then

C  c2eL+M2 MP’+P"+q’+q"
and

~x*y~p,q~c2eL+M2 22(p+q) Mp+q.

§ 1.3. Continuous processes and their integrals
Definition 1: A continuous kernel process is a continuous mapping

x : I(x) S~(I)(2~ --~ C
such that

Ilxllp,q = sup { Ixt(6, ~)~ : t E I, #6 = p, #~ = q }  ~
for all p, q.

If f : I -~ C is measurable define the measurable kernels

f(t) if o = ~, ~ _ {t}
~(f~(J, 1) ~ L 0 otherwise

a+(~(6~ ~) = f(s) if 6 
= 

’ L 0 otherwise 
°

Then a~ and at are examples of continuous kernel processes where

~) = a(lIn)-~,t~)(6~ ~) _ ~ ~ if 

0 otherwise .
the case t = t’ is not defined and similar
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a+t(03C3,t)=a+(1I~]-~,t])(03C3,03C4) = {1 if 03C4 = ~, 03C3={s}, st
0 otherwise 

The following proposition shows that the stochastic integral is a Riemann integral.
Proposition 1: Let x be a continuous process on I. Let [to, tl] c I and (a, T) E S2t2>.
Let to = t(o)   ...  t(n) = tl and b = max (t~i~ - t~i-1~). Assume _ ui  t~i~
and ui  Then for 6 - 0 i=1,..., n

L (xu, * (a~d-i) - (o, T) ~ G, 

and L ~at~’~ - at~’n~~ * x~ ~ xs( a B {s}, ~).

The right-hand side is well defined as
t~ {t}) and s~ (oB 

Proof: Call ~1 = [t~~~, A~ = ]t~l>, t~2>], ..., A~ = ]t(n-I), t~n~].
Then

~, (xui *(~t~’~-~t~i-~i)){6~’~) _ ~ T)
i i .

k

xu; (6, ~ 1 {t})10 i (t).
i=l 

If 8 is sufficiently small there is at most one element of T in Ai. We continue, the last
expression equals

~ 
i:~t~ 03C4~0394i t~03C4~[t0,t1]

Definition 2 [ 1 ], [6], [ 10] : Assume A c I

(6, ~) _ ~ 
t~ 03C4~A

L 
A ~ SE 6nA

Definition 3: Let x : I(x)Q(I)C2) be a continuous process. Then x is called continuous

differentiable (Cl) if

I ~) for 

(6~ i) = xt+o(6 u {t}, i)
(6~ i) = xt-o(a u i)

(R+)t (a~ i) = i u { t } )

{6~ ~) = u ~ t } )
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exist and form continuous processes.
Remark 1: Let x be a continuous differentiable process. Then

T) exist for all t e I.

The following theorem goes back to H. Maassen [9].
Theorem 1: Let x be C~ then for to  t in I 

htdt.

with

gt =R!,x - Rix

We write for short

= da~ * f + da~ + htdt.
Proof: Call

and ..., 
= (o u T) n ]to, ti[.

Then

T) - T)

n+ I n

= ~ ~) - (j, T)) + ~ (0. T) - Xt(i)-o (0, T))

= I(t) t(i-1) dt ht(03C3,03C4) + {ft(i)( 03C3B{t(i)},03C4), if t(i) ~ 03C3gt(i) (03C3, 03C4 B {t(i)}), if t(i) ~ 03C4

Now ht is locally integrable w.r.t. This gives the theorem.
Proposition 2: Let x(") be a sequence of C1 processes such that and 

x~p,q converge to zero for all p, q. Then the R" x(") and Rr±X(n) converge to Rl± x and
R~ x and hence the f~B g~B of the last theorem converge to f~ g~ h~
Lemma 1 [9] : Fix Q(I). Assume a function

z: -~ C

to be continuous and bounded for ({t} u eo) n C0o = 0 and that

are defined and continuous and bounded for ({t} u co) m (Do = 0. Assume furthermore that

z(co) vanishes for ~o sufficiently big. Then t ~ I dco is continuous differentiable
for t ~ (Do and

d dtzt(03C9) = zt(03C9)d03C9+d03C9 (R+z-R_z)(03C9
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Proof: Choose t ~ (Do and e > 0 such that Ig = [t-e, t+e] does not meet Oo.

~  l (t~(co+y) - 

do) ~ (z~(o)) - z~((o) + ~~(IBIe) ~ ~ + {s} - z~(o) + 

+ 

k> #y z2 

=1+11+111.

Now

and 2014~ for t ~ co, that means a.e. As the integral is bounded

We have

~~ dsz~((o+{s})=~-~ 
1 

as

Zt+~(03C9+{t+~s})=t+~t+~sZt’(03C9+{t+~s})dt’ +Z(t+~s)+0 (03C9+{t+03C9s}) ~Zt+0(03C9+{t})

by the continuity ofR+z and by the boundedness ofz. So II ~ d03C9(R+z)t(03C9) - (R_z)t(03C9)).
It is easy to see that That is continuous for t~ 0)o can be shown
in the usual way. 

~~

The following theorem is a generalized Itô-product formula and can be found without proof
in[12].
Definition 4 (cf. Def. 1 of 1.2): We say that the processes Xt and y~ have the finite

product property (FP) if for fixed ~a~ #a~ there exists a constant R such that

(PF) 03B21 + + y, = 0 for #y > R and all 

Theorem 2: Assume that the process Xt and yt t are C~ and that they have the finite
product property (FP). Then x * y exists and is C~ and

y) = y + x * 
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and similar for R~ and R~ and

d dt (x* y)t = xt* yt +xt* yt + (Rr+x)t* (Rl+y)t-(R_x)t*(Rry)t.

Proof: We have

T) = L f dy(x,(ai+{t}, +

.

For s I t the integrand stays bounded and converges. So

Rf(x * y) = y + x * (Rf y);

these are continuous processes by proposition 1 of 1.2 and its proof.
We have for t ~ 03C3 ~ 03C4

(x *y)t(03C3,03C4)= d03B3xt(03B11,03B21+03B3)yt(03B12+03B3,03B22)

Apply the previous lemma for
= 

and Then we obtain the wished result as

~t+o(co+( t } ) = Pi + + w + } t }, ~i2)
= (R~ x)t (ai, ~l + o) (R! y)t(a2 + o, ~2).

§ 1.4. Adapted processes
Definition: Let x: -~ C be a continuous process. x is called forward adapted
if

xt(a,t) = 0 for t  max(03C3~03C4)
and x is called backward adapted if

= 0 for t > 

Remark 1: Assume A c I measurable and x,y two measurable kernels on I such that

= 0 for 6 u ~ A

for 
Then x * y = y * x and

(x * y)(6,i) = x(6 n A, t n A)y(o n AC, 6 n AC).
From this remark one deduces

Proposition 1: Let x be a forward adapted continuous process. Then using the
terminology of proposition 1 of 1.2, the Ito sum
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~ 

_~ (att’~ - * Xt(i-l) -~ J’ dat.
Similarly, let x be a backward adapted process, then the "backward-Ito" sum

L ~ xt(;) -~ ~ Xt * dat.
Similar assertions hold for a+.

Hence we will use the notations

f dat * xt = f Xt * dat
,~ xt = j dat

for forward or backward adapted processes.
Proposition 2: Let x be forward adapted, then

Axt*dat= {Xmax03C4(03C3, 03C4B{max 03C4} if max 03C3  max 03C4 and max 03C4 ~ A

0 otherwise

. x~ * da~ ~ = f Xmax 0(0’ B { max o}, T) 
if max T  max 0 and max 0 E A

A 0 otherwise

Similarly, if x is backward adapted

Axt*dat={Xmin 03C4(03C3,03C4 B {min 03C4}) if min 03C3 > min 03C4 and min 03C4 ~ A

A 0 otherwise

AXt*da+t= {Xmin03C3(03C3B {min 03C3}, 03C4 ) if min 03C4 > min 03C3 and min 03C3 ~ A

j Xt * dat =A 0 otherwise

Proposition 3: Let x be forward adapted and CI; then

~) = + { t }, ~)

may be different from zero only if t > max(03C3 u 03C4), the case t = max(03C3 u T) being not
defined. R~ is always = 0. One has similar results for R+x.

Let x be a backward adapted process and C1, then Rix and R~x are zero and

R~ and R~x are -:;:. 0 only if t  min(6 u ~).
From these results we draw the corollary used again and again.
Corollary: Let x be a forward adapted C1-process and assume

dx~ = dat + gt * da~ + htdt.
Then t ~ xt(~, ~) has no jump and is Cl, so

xt(~~ ~) = ~) + f 0)dtB

Assume 0 ~ 03C4 ~ 0. Then there exists tmax = max(03C3 u 03C4).
For t  tmax we have = 0, for t > tmax the function t ~xt(03C3,03C4) has no jump and
is and we have that
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~’~) for 
’

B {tmax}) for tmax T

So finally

0 for t  tmax

for t > tmax.
tmax

Similarly, if x is a backward adapted process we have

Xt(~~~) = Xta(~~~) + 
for all t ~ I and for 0 and tmin = mine 0 u T),

0 t > tmin

Xt(03C3, 03C4) = Xtmin(03C3,03C4)- ht’(03C3,03C4)dt’ for t  tmin

and

Xtmin-0 (03C303C4) = 
-fmint(03C4B{tmin},03C3) if tmin~ 03C3

-gmin t(03C4,03C3B {tmin}) if tmin~03C4

Proposition 4: Let x(l) and x(2> be forward adapted processes and C 1 such that

having the finite product property PF of definition 4 of 1.3.
If

+ gt’~ * da~ + (i = 1, 2).
Then

d (x(l) * x(2» = x(2) + ft2~~ * dat
+ ~gr 1 ~ * Xt2~ + Xt l ~ * gt2~~ * dat
+ * + * + * 

If > and x(2) are C~ 1 and backward adapted, the "Ito term" + * f~2~ has to be

replaced by * f~2~. So we have the usual Ito table for forward adapted processes
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da+
dat 0 dt

dat 0 0

and the slightly different Ito table for backward adapted processes
dat dat

dat 0 -dt

dar 0 0

This result is an easy consequence of proposition 3 and theorem 2 of § 1.3. .
Proposition 5: Let x be forward adapted and y be backward adapted, then

= 

and

xt*yt = yt*xt.

Assume x and y to be C l, then x * y is Cl l and one has the classical rules of

differentiation without any Ito term. So the Ito table is

dat da~ .

dat 0 0

da~ 0 0 ..

Proof: See Remark 1. As the integral term in x*y does not appear, the calculations are
much simpler than those of theorem 2, § 1.3 and we do not need the property (PF).

§ 1.5. The number operator and the splitting of the Fock space
The number process has been introduced by Meyer into the framework of Maassen

kernels. We will not follow him, but will consider it only as an operator on C(I).
Definition: Let § E C(I), so we define

by A~(c~) _ 
The operator A is called number operator. We could introduce A into the framework of
Maassen kernels defining

= { 
b(s-t) 

.

L 0 otherwise

We will not persue this line of ideas. Instead we want to investigate the operator A-

a+(f)a(f), where f ~ I ~ C, |f|2dt = 1.
Let I c R be an interval and f : I -~ C continuous and bounded and such that j If(t)12dt =
1. Define the operator

Co : Co(I) -~ Co(I)
(1)

L ( _ 1) m 
m=o 

rn1

where a#(f) is the operator § -~ a#(f) * ç. In where § E Co(I), there are only
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finitely many terms in the sum.
By direct calculation using the commutation relations we obtain
(2) = = o.

From there one obtains immediately Co = 
Call

(3) = 

Then

(4) ~k~,~ _ ~k.~~k.
Furthermore

(5) ~ =1.
k=0

We shall prove as an example the last equation.

~ = (-1 )~ =~ cP a+pap
k=o 

k.~ ° P. ° i

with ~.i-.)~)={"’=". .
Call C(n)(I) the set of bounded continuous functions -~ C, then Co(I) = ©

C(1)(I) 0+ ...
Call x= { ~ E Co(I) : a(f)~ = o } .
Then

JBo ~D’ ~Ct d7 ~C2
with

l~ _ C(i)(I).

Proposition 1: maps Co(I) onto x
Proof: Immediate.

Proposition 2: Any § E C(n~(I) can be expressed in a unique way in the form

03BE=a(f)+k k!03BEk
with

03BEk ~ n-k.

Proof: We split

Then a(f)k k!03BE~ C(n-k), by the properties of a(f), hence 03A60a(f)k k! ~ K(n-k). The uniqueness
follows out of eq. (4).

Corollary: Call the k-th vector of the standard basis of 1,2(N):
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a(f)k k!
03BEk ~ 03C6k~ 03BEk

is an isomorphism from Co(I) onto io(N) ~ K which preserves the scalar product. Here
1.o(N) is the set of finite linear combinations of the ())~.
We split the number operator accordingly

A = (A-a+(f)a(f)) + a+(f)a(f) = Ao + a+(f)a(f).
We have on x

If § E C~n~, then in the decomposition of proposition 2
= A~k = (n-k)~k. 

’

II. The quantum stochastic differential equation of the inverse
oscillator

§ 11.1. The physical model
The quantum oscillator has the Hamiltonian where 03C90 is the frequency

and b and b+ the usual annihilator and creation operators. The inverse oscillator has the
Hamiltonian Coupled to a heat bath of oscillators (a~)~E n the total Hamiltonian
is given by

(1) Ho = + + L 
~eA

where we have used rotating wave approximation. This Hamiltonian, however, is not
bounded below, so it cannot describe a real physical system. Nevertheless, it is able to give
the initial behavior of superradiance and can be used as a model of an amplifier. We give a
sketch of these ideas.

The physical model of superradiance can be found in [2] and more explicitly in [11]. We
use the normalization of [4]. Consider a system of N two level atoms contained in a region
of space smaller than the wave length where 03C90 is the transition frequency of the
atoms. We assume the atoms coupled to a heat bath of harmonic oscillators and obtain in
rotating wave approximation the Dicke Hamiltonian

HDicke + + ~ g~ + ~ 
Xe A 
vNvN

The Hilbert space of the atoms is (C2)® N. The operators Si are defined by
S~ = o~ 1 0 ... 0 1 + ... + 1 0 ... (8) 1 0 ~

with

03C3i=1 2(0 1 1 0), 03C32 =1 2(0 -1 1 0), 03C33 = 1 2(-1 0 0 1), 03C34=(0 1 0 0), 03C35=(0 0 1 0).
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The operators S; obey the spin commutation relations. So (C2)®N can be considered as a

spin-representation space. Any irreducible representation is invariant under the application
of HDicke.
In the case of superradiance at t = 0 all atoms are in the upper state. Then, due to

spontaneous emission, one atom emits a photon, the radiation increases the probability of 
’

the emission of a second photon, so an avalanche is created which is dying out when the

majority of atoms is in the lower state.

At t = 0 the state of the atomic system is ~ 1 ®N This vector is the vector of

highest weight of the representation space and application of the Si generates an invariant
irreducible subspace spanned by m = -N/2, -N/2+1, ..., +N/2. One has

S3~m - 
S±Wm = 

Put

~k = 
then

k = 
i

k = ~ 

For the operators become b and b+ resp., and shifting the total energy
by N/2 we arrive at the expression of Ho.
By the considerations above it is clear that the Hamiltonian Ho describes only the initial
behavior of superradiance before saturation has to be considered. We calculate in II.6 the
occupation numbers of the oscillator state when there is no influx of photons. The
probabilities that the oscillator is in state Ik>kl are described by a classical Markov
process X(t), which can jump by +1 and where the jumping rate is proportional to k+1,
if X(t) = k.

By the way, if we started here by = 0 1 ®N12~ all atoms are in the lower

state, we would have arrived at the equation for the non-inversed oscillator.
We split Ho (eq. (1)) into two commuting operators Ho = H+H’ :

(2) H = + 

(3) H’ = + 

The time dependence due to H’ is trivial, it describes a fast oscillation, modulated by H.
We consider H alone and introduce the interaction picture with respect to and
obtain for the time development operator.

d Ut,s - 
Now interpret
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(4) F(t) = 
as quantum noise

(5) [F(t), F+(s)] = k(t-s) = 
and perform the so-called singular coupling limit where you replace k(t-s) by 8(t-s).
Calling F(t)dt = da~ we arrive to the quantum stochastic differential equation
(6) d Ut,s 
where correction -1 2bb+dt is the so-called Ito creation term.

II. 2. The Heisenberg equation
As the Hamiltonian is quadratic, the Heisenberg equations are linear. We shall establish
them in a non-rigorous way and discuss them. They will later in 11.5 come out of the exact

theory in a rigorous way.
We return to equation II.1 (2) and calculate the Heisenberg operators

b+(t) = eiHtb+e-iHt

a~(t) = eiHtaxeiHt.
We have

d b+{t) -1 
d a~(t) = i ~a~{t) - b+{t).

Solve the second equation 

a03BB=(t) = e-ioo03BBta03BB-ig03BB-ig03BBt0e-i03C903BB(t-03C4)b+(03C4)d03C4

and insert into the first one

d b+(t) = i ~g~ a~ + ~ dt o

with

k(t) _ ~ 

as in 11.1(5). Using 11.1(4) we write

d b+(t) = iF(t) + f t dt 0

Performing the singular coupling limit we obtain

dtb+(t) = i da~ + 1 2 b+(t)dt.

Remark that we have to go with k(t) to 8(t) in a symmetric way. We integrate and arrive
at
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b+(t) = et/2b++it0 e(t-t’)/2 dat,.

Multiplying with e-t/2 we see that

e-t/2 b+(t) ~ b+ + i ~0 e-t’/2dat = B+

for t ~ oo. So e-t/2 b+(t) does not converge to zero, but to some quantity which can be

interpreted as a classical quantity as
[B, B+] = 0.

One may get the idea that the inverse oscillator acts as some photon multiplier where after

amplification a classical quantity comes out [2].
Let us investigate the stochastical behavior of B and B+, when the initial density

matrix p of the oscillator and the bath is given. We calculate
= Tr p ei(zB+zB+).

By Bochner’s theorem C(z) is the Fourier transform of a probility measure on C2.

= J P(d~) 

so p(d~) describes the statistical behavior after amplification.
Assume p = po @ where po is the initial density matrix for the oscillator

and is the vacuum of the heat bath. Then

C(z) = Tr po ei(zb+zb+),

Now Tr po ei(zb+zb+) is the Fourier-Weyl transform of po, its Fourier transform is the

Wigner transform of po, we call it W(po,~). Then

p(dç) W(po, 

so p(d~) is the Wigner transform of po smeared out by a Gaussian distribution.
Assume po = |0>0|, the ground state of the oscillator, which is here the state of

highest energy, then

P(d03BE) = 1 03C0 e-|03BE|2/2d03BE.

Assume a coherent state

~ = e-I~i1212 o >,

and po = then

P(d03BE) = 1 03C0 exp(-|03BE-03B2|2d03BE.
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So we recover the value P with an additional incertainty.

II. § 3. An inequality for two oscillators
We will derive an inequality for the space of two oscillators crucial for the treatment

of the inverse oscillator in a heat bath. We do not attempt to derive the inequality in its
strongest form, but only in the special case needed below.

Assume the Hilbert space 1,2(N2), the subspace ,Q~(N 2) _ ,Q~ of linear,
combinations of the standard basis vectors nv, ,~ m = 0,1,..., and define the usual
creation and annihilation operators a, a+, b, b+ with

(1) [a, a+] = [b, b+] = 1, [a, a] = [a, b] = [b, b] = 0
and

=1~ m>

(2) m> = m>

m> = ~m+1 L~ m+1>.

Define the quadratic operators
A = a+a + bb+

(3) B = ab + a+b+

C = ab - a+b+.

Theorem: Assume a,fi E R, a > 0 and a2 - ~i2 = 1. Then there exist constants Yo = 0
 Yt  y~  ..., such that for all § E io(N2)

~, 

The proof will be the result of several lemmata. We will use the fact that the operators
A,B,C have the same commutation relations as the traceless 2x2 matrices,

(0 1 1 0), (0 1 0 -1). One has
[B,A] = 2C, [C,A] = 2B, [C,B] = 2A.

Define ,e,~m) = ,~~m)(N2) to be the set of linear combinations of with .~+n _ n. Then

C : ~ i,(m+ 1)

 

for § E ,~~m). Define

,~. _ { ~ E ,~2 : ~,Ak~  ~ for k = o,1, 2, ... } .
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Lemma 1: The sum 03A3 tm m! Cm 03BE = ect converges in norm to a vector in lr for § ~ l0
for ° More precisely,

~ IIAkl2 C~ Y (n+m)~2 2m~ t r (n+1)...(n+m)  oo

n~o m. m=~ m.

for ~ E and k = 0,1,2,....
Proof: Apply the quotient criterion.

The algebra w = b#) generated by a# and b# can be described as the

algebra generated by four indeterminates with the commutation relations (1). More precise:
Define the free algebra x2,x2>, divide by the ideal J generated by

x~xi
X+jX+i

XiX+j-X+jXi03B4ij
and call

Define

a~ = (cosh t)a + (sinh t)b+
bi = (cosh t)b+ + (sinh t)a
at = (cosh t)a+ + (sinh t)b
bt = (cosh t)b + (sinh t)a+.

As the af and bf have the same commutation relations as the a# and b#,
replacing in a polynomial in the a# and b# by the at and bf defines an

isomorphism : w -~ w.

The polynomials pEW can be defined as operators on ~.. The mapping a ~

a+, a+ -~ a, b - b+, b+ -~ b defines an involution in w. One has

= 

for ~, ~ E 
Lemma 2: Assume p E and It!  1/2, ~, ~ E ,Q~. Then

(*) p 

Proof: The inequality in Lemma 1 shows that ect is differentiable. As C+ = -C, one
obtains

d p = 

On the other hand
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~=~([C,a]),...~b~=~([C~]).
Hence

The mapping p 2014> [C,p] has the property that it maps the subspace z~ spanned by the
monomials of degree  n into itself. Let pi,..., be a basis of z~ then

N

[C,pi] = 03A3cikpk, cik ~ C;
k-l I

hence

~ Pi = ~ c,k pk e-Ct~;
on the other hand

So both sides of (*) obey the same system of differential linear equations. As they coincide
for t=0 they must be equal.

Lemma 3: aA + ?B = with t 

Proof by direct calculation.
We define a polynomial to be positive p > 0, if

~P~>0
for all § ~ ~.. We shall use the following inequality again and again:
For p,q e W

p+q + q+p  p+p + q+q.

That is a direct consequence of

p+p + q+q - p+q - q+p = (p-q)+(p-q) > 0.

Lemma 4: There exist constants yo = 0  ~  y~ ~ ... , such that

Proof: We prove the lemma in the following way. Call E~ and E~ the assertions
(E~). There exists K~ such that
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(Ek~ ) There exist ~yk such that

Now

(Eo): B = ab + a+b+ _ a+a + bb+ = A.

By the inequality above

and

B2 = a2b2 + a+2b+2 + aa+bb+ + a+ab+b

~ a+2a2 + b2b+2 + aa+bb+ + a+ab+b
= a+aa+a + bb+bb+ + 2a+abb+ - 2a+a + 2bb+

 A~ + 2A  3A~

as A f A2. Finally

(Eo) is trivial. Now

BAk + AkB = ABAk-1 + Ak-IBA + + Ak-I[A,B]
= A(BAk-2 + Ak-2B)A + 
 Kk-2Ak+1 + 
f {Kk_2 + 

as Ak+l. This proves out of (Ek_2) and ~E)_j). On the other hand
k-l i

[C,Ak] = 2 L AiBAk-I-i = 2((BAk-1 + + A(BAk-2 + Ak-2B)A + ...)
i=0

 2(Kk_1 + Kk_2 + ...)Ak.

This proves (Ek) out of (Ek), .... 

’

Let us collect facts. We have already proven (Eo), (EI) and (Eo). Then (Eo)
implies and (Eo) and (E 1 ) imply (E~), and Eo and Ej 1 imply (E~), and 

and imply (E~), (Eo) implies (Eo) and (E’i) imply (E~), (Eo) and (EI)
imply (E~), (EI) and (E2) imply (E3~, (Eo), (El), (E2) imply (Es) and so on. ’

Lemma 5: For § E ,Q~ and It  1 2 one has

°

Proof: We differentiate the left-hand side and obtain

e-Ct~  
Integrating this differential inequality yields the result for t > 0. Negative t means
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replacing C by -C, or b by a and a by b. So we have the same result.
Corollary: The mapping It  1 -~ e-Ct can be extended to a unitary group of operators
on R. These operators map the subspace ~r ~k~ of vectors with the property ~~ Ak ~ oointo itself and one has

 

for all t.

Proof: Unitarity follows from Lemma 2 for p = 1 for small t. From there extension to
all t by iterated application of lemma 4, as do the other statements. The theorem is the
direct consequence of the corollary and lemma 3. .

§ II. 4. The kernel solution of the stochastic differential equation
The equation

dt Ut,s = (-ibdat - Ut,s

can be interpreted as an equation for matrix elements, which we write

(mlut,sln) m, n e N.

So (mlut,sln) is a kernel with values in C, the vectors Im>, n> are the eigenstates of the
inverse oscillator in the usual Dirac notation. Then the equation becomes

Remark that the sum over £ is finite due to the special character of b#.
Proposition 1 : There exists exactly one family of solutions

(mlut,sln), m, n e N, t > s

of (1), which is Cl and foward adapted and obeys the condition

b~>~

and it is given by
(6,~) _ (-i)#Q+#~ b~~ 

for T u 6 c [s,t] and 0 otherwise, where

and ..., tk} with t  ...  tk
and
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b~ = { 
b if ~ = 0
b+ if ~ = 1

and ~i = 0 if ti ~ 03C4

~i 1 if ti ~ 03C3

Proof: Assume at first T = o = 0. Then (mlut,sln) (0,0) does not have any jumps. As t ~

(~,~) is C1 we have the differential equation

(~,~) _ (~,~)

and

(mlut,sln) (~,~) _ 
Assume now

and 

Then

(6,~) _ 

Assume e.g. t’ E a, then

(a,’~) _ -i (a1{t’ },~)

and (6,~) = 0 because of the forward adaptedness. So

(mlut,sln) (6,~) _ (a1{t’ },~t)

= (-i) (61{ t’ },~c).

This shows that an induction is possible with respect to #6 + #~.

Inspection of the solution and the theorem 1 of 1.3 show

Proposition 2: The processes s ~ (mlut,sln) are backward adapted and Cl and

dsut,s = Ut,s * (ib das + ib+ da+s + 1 2bb+ds 03B403C6, 03C6)
or more precise

Remark 1: The matrix element (mlut,sln) (03C3,03C4) are * 0 only if m + #03C4 = n + #6.
Proposition 3: Let r  s  t. Then

ut,s * us,r = ut,r
or

(X * 
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For fixed the sum consists out of at most one term.

Proof: By proposition 5 of 1.4

,e,

So by the remark 1 there is at most one term in the sum over 1...
Differentiate the left-hand side of the last equation with respect to s and apply proposition
5 of 1.4, then

that means that that expression is independent of s, so

L = (mlut,rln) .

Define the kernel valued matrix S

or

(a,~) _ (mlut,sl n}- 

Lemma 1: We have the estimate

if l+p = m+q. If l+p ~ m+q, then

for #6 = p and #~ = q.

Proof: We have by proposition 1

I ~,~ m)) =/~) bEk ... ~m  ~,~ I bEk ... ~,~ b+Plm)

From there one gets immediately the second part of the inequality. The first one follows by
a similar reasoning.

Lemma 1 shows that m) does not satisfy Maassen’s condition (cf. 1.2,
Remark 3). But the pairs I m) and ~,~’I I m’) where E = 0,1 and u~ = u, ul =

u+ have the finite product property as
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and

for sufficiently big r by lemma 1.
Lemma 2: The sum

dy Lk (a"+y,P")

converges uniformly for all a’, a", with fixed #a’ = p’, #a" = p", = q’ and
= q" for fixed j and k and 0  t-s  1.

Proof: Assume #y = r, #a’ = p’, #a" = p", = q’, = q". This means

m+p’ 
n+p"+r=,~+j+q".

So r = 2 + c for some constant c, or r = 0. So the terms in the sum can be estimated by

y )~k _

~ (~+c)! i 

using the quotient criterion.
Lemma 3: Let Cx,y> be the free algebra over C generated by x and y and define the
mapping

A: Cx,y> ~ Cx,y>
P -~ xyP - 2xPy + Pxy.

Then for two elements P, Q E Cx,y>
APQ = (AP)Q + P(AQ) + 2[x,P][y,Q]

and for n elements P1, ...,?n
... 

... Po + ... Pn + ... + P1 ... Pn-lAPn

+ 2 L PI". Pi-l ... [Y,Pj] ... Po. .
1 

Proof: By direct calculation

A(PQ) - (AP)Q - P(AQ) = 2 [x,P][y,Q].

From there proceed by induction.
Denote for s _ t
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bt,s = b e(t-s)/2 03B403C6,03C6-t0e(t-t’)/2da+t,
(1)

b + t,s = b+ e(t-s)I2~~~~ + i j~ 
and

(2) bs,t = b + i j~ 
bs,t = b+ e(t s)~2b~~~ - i 

Call as in § II.3 W (b,b+) the algebra generated by band b+ with the defining relation
[b,b+]= l. As =1 and = l, replacing in a polynomial p in b, b+
the elements b, b+ by bt,s and (resp. and defines an isomorphism 
(resp. from W into the algebra of kernels. Multiplication of these kernels is not a
problem as in the integral term f dy only finitely many #y occur.
Proposition 4: Assume p E b+) and 0 _ t-s  1.

Then

~ * ~.~pl.~~~~~ ~ (6,~) _ 
~, ,~’-- 0

and

.~ .~=0

The sums converge uniformly for fixed #6 and #~.
Proof: Due to the structure of b# we have that

= 0 for I,~ .~’ I >_ c

where c is some constant dependent on p and for fixed ,~

K

~  .r 
k=0

for all ,~’ and with fixed constants ak. So using lemma 2 we show that the sum as well
as its derivative with respect to t converge uniformly for fixed #6 and #~t.

Using the fact that have the property (FP) of definition 4 of 1.3, we
can apply proposition 4 of L4 and justify the following calculations in matrix form.

One has

= * (ib + 

and
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* * ut,s = uts * (i[b,p ]dat + L 2 Ap b~~~dt) * 
with

Ap = bb+p - 2bpb+ + pbb+.
Now

=1 2 bt4t + ida~.

As the pair has the property (FP) we can apply this theorem repeatedly and
obtain 

~ 

dt(b~1t,s * ... * b~nt,s) = n 2 b~1t,s * ... * b~nt,sdt

+i I ~ ’ ’ ’

+ ~ ’ ’ ’ ’

The ^ signifies that this factor has to be deleted ~i = ±1, and b(+1) = b+, b(-1) = b.

cI = 1, C_1 =0; c’i =0, c’- j and c1,1 = c-1,-1 = c-1,1 = 0 and = 1.

Now 
~ ~ ~ 

[b,bEi] = cE~
= c~~~

Ab=-b

Ab+ = -b+.

So

dtb~1t,s * ... * = 
... 

... bEn]) * da~ + ... ... bEn))dt.

So for all pe 

(*) = i da~ + i 

For p = 1 we have

= 0.

So 

Let Wn(b,b+) be the span of all polynomials in b# of degree:::; n. Then p -~ [b#,p] is a

mapping from wn onto and p -~ Ap is a mapping from Wn into itself. We
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assume to be calculated for pe Find a basis pl, ..., pN of wn, then Api =
03A3 Dikpk and for 6 = 03C4 = 03C6 the function t ~~t,sp(03C6,03C6) is differentiable and

= 
°

So it is uniquely determined by = Pk. Explicitly

~ 
k

Assume T u 6 ~ ~, and e.g. u o) = t’ E o. Then for t > t’ :
t -~ cr)

is C1 and

I = -~ ~ ° 

,

For t  t’ one has = 0 and for = }~6).
So is uniquely defined by the differential equation (*) and the initial conditions. As
the

Uts * Ps~,~ * ut,s, P E Wn
obey to the same differential equation and to the same initial conditions they coincide.

A similar reasoning applies to the second half of the proposition. Differentiate now
with respect to s! !

§ II. 5. The solution as unitary operator
We introduce

C = C(Q(I) x N)
the space of all functions § : x N -~ C; {co,,~) -> ~(~,,Q,), such that

=  ~.

We denote by
C o = Co(S2{I) x N)

the subspace of these ç such that ~(w,,~) = 0 for #~+,~ sufficiently big.
Let § E Co, we define ~m{~) _ ~(~,m). Let Ut,s and uts be the kernel valued

matrices of the last chapter.
Define

{Ut,s~)(~~~) 
m

or

(U(t~s)~)(~~~) _ ~ ~ J dr + T, m).

Similar
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So Ut,s and are operators C0 ~ C by proposition 1 of 1.2. They are adjoint in the
sense that

Ui s~~ ~ _ ~~ Ut,s~ for ~,, ~, E Co.

Define the operators N = b+b and A as in § 1.5, so

(N~)(~~.~) _ 
A~(~~-~) _ (#~)~(~~~) ~

Proposition 1: We have

(N-A)Ut,s = Ut,s(N-A)
= 

Proof: We have

+ T, m)
= (m - #~ - #w + #6) (a,~)~((~16) + ~,m)
= (,~ - #w) (0,T)~(((0B0) + 

as vanishes unless £ + #~ = m + #a (see II. 4, Remark 1). Denote by
C.r(Q(I) x N) = Cr the subset of C given by

for all k = 0,1,2, ....

Proposition 2: The operators U,s s for 0  t-s1 map Co into Cr.
Proof: Assume ç E Co, then

= F I * * ,~ks~,~ * * ~m ~2

Following the discussions of § 1.1 we obtain

=  d03B312 d03B313 d03B323 03BEm1(03B312 + 03B313)

C~Y12~ ~Y231~m 2 ~~Y13 + ~Y23~~

By lemma 2 of II.4 the sum



150

~ ~ C~12~ ~Y231
,e.

converges uniformly for all ’Y23 with fixed and to some bounded

function. As and #~y13 stay bounded, we have finally that

 ~

for all § E Co and all k. Now

= 

using Schwarz’s inequality.
b and b+ can be defined as operators on Cr and are mutually adjoint.

Proposition 3: Let 03BE, 03B6 E Co, 0  t - s  1 and p ~ W (b,b+). Then

interpreting and as operators on Co.
Proof: We have

~, ~ml’~ * * * 

We use again lemma 2 of II.4 in order to ensure the convergence of the sums and apply
then proposition 4 of IL4. The last expression becomes

- ~, * ~m2 = 
m1,m2

Proposition 4: Let 0 _ s-r1 and 0 _ t-s1, then for ~,~ E Co

~~Ut~r~ .
Proof: The convergence of the sum
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~ ~m2

follows from lemma 2 of II.4. Apply proposition 3 and proposition 4 of II.4 for p = 1.
Proposition 5: Let ~,~ E Co. For fixed s and t ~. s

((U~~),(A+N)B~-~-~0 0
where E = ±1 and U-~ = U+, U-~ = U.

Proof: By proposition 2 it is sufficient to show that

Ui,s~-~~ Nk(Uc,s~-~) -~ 0.
The left side is equal to

Now

8,Q~8~~~1(al~t’1+’Y)~kC~~~,s~m2~’s,~m2s~~~~~a2+Y~~2)

has the property that for Y ~ ~

y)~ _ 1 

= 

So if and to - s  1,

and by the reasoning applied in lemma 2 of 11.4, we have that

On the other hand, all y) --~ 0 for t ~. s. Apply the theorem of Lebesgue.

Proposition 6: There exist constants Yo = o S Y2  ... such that for 0 _ t-s  1,
~=±1

S 

with
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p(t) =1 (t + log(1 + 1-e-t)) S 1 (t + log 2).

Proof: We have by (1) of IL4
= e(t-s)/2b + et-s-1 a+(f )
= e(t-s)b+ + a(f )

where ft,s(t’) = i et-s-1 1[s,t](t’)e(t-t’)/2

has been chosen such that

j ft,s(t’)2dt’ = 1.
Then 

bc,sbr s = ec-sbb+ + e(t-s)/2 et-s-1 (b+a+( ft,S) + ba(ft,s)) + 
We have 

and recall 
[N-A, bt,s b+t,s ] = 0

bb+ = N+1.

Use proposition 1
= (2(N+1) + 

=1 () (2(N+1) + = X ~,~ i=o J 
( 

’ i=o Lr J

= ~,, A-N)k~ _ ~,~ (Ao + 
with

Ao = A - a+(ft~s)a(ft~s)

Mt,s 

= 2bt,sb+t,s - bb+ + a+(ft,s)a(ft,s).

So

Mt,s = (2et-s - 1)bb+ + + ba(ft,s)) + (2et-s - 1)a+(ft,s)a(ft,s).

Co, we can write it in the form

~_~b+y0>®~~=~I,Q, >®~,Q,

with 03BEl ~ C0(03A9(I)). Apply the results of 1.5. We obtain

03BE = b+l l! |0 > ~ a+(ft,s) m! 03BEl, m

with = 0’
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We establish so an isomorphism between Co and 

~S~~-’S ~-~
The operator works only on the first factor, whereas Ao is the number operator on
the second factor.

So Mt,s can be represented as a polynomial in a# and b#. Recalling the notations of 11.3
we obtain

Mt,s = aA + pB

with a = 2e~-s) - = We obtain

(~(Ao+M~)= ~ ’ ’ 
’ ~ 

’ 

/

as = 1 we apply the theorem of II.3 and use the fact that both dim-matrices are
positive definite

I e»U
J ~ /

= I f ~1 ~ = ~ (A+Ao)~) = ~ j=0 J 7 B / B / B /
where

e2u = = (e(t-s)/2 - 
or

For U+ we have nearly the same developments changing by 
Theorem: There exists a unique family of unitary operators on for
t,s~R with the properties

Ui.t=l

Ufsj Us,t

for s, t, r e ~ such that
= 

for § ~ Co.
Denote by ~ the subspace of all § e L2(Q(I) x N) such that
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~, (A+N+1)k~ =  ~.

Then

Ut,s : Dk
and

 

for some constants Ck and rk. Furthermore

p ~~ 
for all peW (b, b+) and § E D~ with k > the degree of p. The function t,s -~ 

is continuous in ’4.-norm for § E D~.
Proof: In order to establish unitarity apply proposition 3 for p = 1 and obtain

~~ ~ 1)

Uc,S~, LTr,s~ _ ~, ~ .
As Ut,s and are formally adjoint, we conclude that they are restrictions of unitary
operators on Co. In order to obtain the other results apply the propositions 4, 5 and 6. In
future we shall delete the - and write Ut,s instead of Ut,s.

§ IL6. The classical Markov process of the occupation numbers
We want to investigate the time behavior of the occupation states

= Im> ml, m = 0,1, 2, ...

of the inverse oscillator under the assumption that at initial time the heat bath is in the
vacuum state. Denote by = U(t,s). We are interested e.g. in

~I @ po) = 

where I~> ~I is the vacuum state of the Fock space, po is some initial density matrix of
the oscillator and P~ is the projector

x N) -~ 
~ ~m Im> -~ ~ Im>.

Definition: Let X(t) be the classical Markov process on N = to, 1, 2, ...} with
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possible jumps by +1 and the transition rates given by
P(X(t+dt) = n+1 ! X(t) = n) = (n+l)dt
P(X(t+dt) = n I X(t) = n) = 1 - (n+l)dt.

Denote by
P(X(t) = m I X(0) = n)

the transition probability coming from n to m during the time t.

Lemma 1: For s  t
m

U(t~s)P~ = L (t-S) ’ 

~0 
’

Proof: Using kernels

(1- ~~,~ luts m) * ( m I 

= J l m) (~~’Y) ( m 

= b,~~ {8,~ + 
ti ... f b+e ... b+ 

d~~(b~+~ 

and the integral equals 

Theorem 1: Call

03A6m(t) = 03A6m(t,0) = U+t,003A6mUt,0,
then

Tr(po @ ~~> ~I ) (tp)) = Px (X(tl) = ml, ..., X(tp) = mp)

provided that tl, ..., tp are pyramidally ordered, i.e. there exists a q with 1  q S p such
that

Here 03C0 is the initial distribution of the Markov process

TC(n) = P(X(0) = n) =  n |03C10| n >.

Proof: We shall show that

(*) ... (tp) P .t (X(ti) = ml, ..., X(tp) = mp)

where P,~ is the probability distribution of Markov process X(t) starting with X(0) _ ,e,
For p == 1 this is a direct consequence of lemma 1. Assume now p > 1 and call
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s = tq+l).

Then the left-hand side of (*) equals

Omi Utl,t2 03A6m2 ... Utp, P03C6

= Utp,C

Using 1.1 and remark 1 of 1.4 we write the element of this expression in the
form of kernels

... (~~ 
j,j’

(0, Y~ [ s,tq]) (Yn [s, ~)

tq], ~) ... [0, tp], 0).

Split the integral
d03B3 ... = d03B31 d03B32 ...

with Yl = yn [0,s] and y~ = yn and perform the integral over Y2

Assume now that s, then

~~~~

and the matrix element becomes

,~ luo,tllml) (0, Yn [0, tl]) ... (~~ Y n [tq-2, tq-d)

~) (y (1 [0, tp], ~) 

= (1- |P03C6U0,t103A6m1 ... ... 
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= (~ ’ ... .. ?0~) 
If (*) is true for p’ = p-1, the last expression equals

= ml, ..., Xtq-1 = = mq+1, ..., Xt q = mq) tq-l)

= 8~p,~ = 
..., 

= 

using the Markov property.
If = s, we have a similar argument.
Theorem 2: Assume a density matrix po with Tr po Nk for all k, where N = b+b.
Call

N(t) = U+t,0 Nk Ut,0.
Then

10>01) ... = E~ X(tll ... 

provided that tl, ..., tp are pyramidally ordered where 0, ..., 0 are some

integers.
Proof: Recall

Dk = { ~ E x N) : _ ~, (1+A+N)~ ~)  oo}.
Then

= (Nkç, (1+N+A)~lVk~ _ 
Denoting by

~X~k,l = sup{~X03BE~k : ~03BE~l ~ 1 }
we have

~Nk~2k+l,l ~ 1.
Denoting by

NM =  m03A6m =  m|m>m|

m=0 m=0

we have for 

in ,~norm for all § E ~2k+,e;
The Us,t are bounded operators in D~ for all k. Write

N(tl)kl... N(tp)kP= Uo,tl Nk~ Uti,t2 Nkp 

So for ~ E D2(k~+... +k~ we have



158

~, C = C ~~, ~I
and

~~ ~ ~~ for M -~ ~.

Write 
_

p0 = L ’~r 1
r=0

where ~r are the eigenvalues > 0 of po and are the eigenvectors, then

So ~ I~> are in Dk for all k and r.

We calculate

X (po0 N(tp)kpl
= (~r. f~~N(t1)kl ~ .. 

~ ~ ’~ ~r~ 

= Tr 03C10 (1+N)2(k1+... kp) ~

and

Tr (po ~ -~ Tr (p0 ® 
Call

XM(t) = X(t) 1 { X(t) _ M },
then

XM(t) T X(t)
for and

T X(tp)kp).

On the other side by theorem 1

M

= L ml’ ... mpp P 1t (X(tl) = ml, ..., = mp)
mi,...,mp=0

M

= ~ mk’ ... mpp Tr ~p ® ... 
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= Tr (po @ NM(tp)kp).

Giving on both sides with we obtain the theorem.

Lemma 2: One has

+ k)(X(t) + k-1) ... (X(t) + 1))

= @ (N(t)+k) (N(t)+(k-l))... (N(t)+l)

= 
... 

Proof: Differentiate

d dt (m+k) (m+k-l) ... (m+1)pm,l(t)

= L (-(m+k) ... (m+1) (m+1) 
m

+ L (m+k) ... (m+l)m 
m

= k L (m+k) ... (m+1) 
m

Lemma 2 gives the possibility of a check bkb+k = (N+1) ... (N+k)
so using equation (1) of 11.4

@ (N(tl)+k) ... (N(tl)+ 1)

= ~ ~I b~.~o ~>

= ekt 

= ekt (,~+ 1 ) . , . (,~+k) .

Remark: If r, s, t are not pyramidally ordered, then in general

Tr(10>01 ~ N(r)N(s)N(t) ~ Eo X(r)X(s)X(t).

Proof: Using again equation (1) of 11.4 we have

Now 
(0, (N(s)+I) (N(t)+I)IO, tb~ = (0, ~~.

Now

= et/2 (b + a+(ft))
with

ft(t’) _ -i (t’) 
Then we obtain
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(0, (N(s)+1) (N(t)+1)10, ~~

= er+s+t( 6-2e-rns - 2e-rmt _ e-snt + 
where

snt = min(s,t).

For r, s, t pyramidally ordered, we have for the last expression

2e-t2 + e-tl-t2)
with

{r,s,t} _ 

If r, s, t are not pyramidally ordered, e.g. r > s and t > s, then we have

2e-t2 + e-2ti)

which is different. So it is

~ Eo X(r)X(s)X(t).

Literature

[1] Belavkin, V.P.: A quantum non adapted Ito formula and non stationary evolution in
Fock scale. Quantum probability and applications. VI, p. 137-180. World Scientific
(Singapore) (1992)

[2] Glauber, R.J.: Amplifiers, Attenuators and the Quantum Theory of Measurement.
In Frontiers in Quantum Optics, ed. by E.R. Pike and S. Sarkar, Vol. X of Malveru
Physics Theories (Adam Hilger), Bristol, 1986.

[3] Haake, F., Walls, D.F.: Overdamped and Amplifying Meters in the Quantum
Theory of Measurement. Phys. Rev. A. 36 (1987), p. 730-739.

[4] Hepp, K., Lieb, E.H.: Phase Transitions in Reservoirdriven Open Systems with
Applications to Lasers and Superconductors. Helv. Phys. Acta. 46 (1973), p. 573-
603.

[5] Hudson, R.L., Parthasarathy, K.R.: Construction of Quantum Diffusions. Lecture
Notes in Mathematics 1055, Springer (1984), p. 173-205.

[6] Lindsay, J.M.: Quantum and non-causal stochastic calculus. Prob. Theory Relat.
Fields 97, (1993), p. 65-80.

[7] Lindsay, J.M., Maassen, H.: The Stochastic Calculus of Bose Noise. Preprint,
Nijmwegen (1988).

[8] Lindsay, M., Maassen, H.: An Integral Kernel Approach to Noise. Lecture Notes
in Mathematics 1303, Springer (1988), p. 192-208.

[9] Maassen, H.: Quantum Markov Processes on Fock Space Described by Integral
Kernels. Lecture Notes in Mathematics 1136, Springer (1985), p. 361-374.

[10] Meyer, P.A.: Quantum Probability for Probabilists. Lecture Notes in Mathematics



161

1538, Springer (1993).
[11] Palma, G.M., Vaglica, A., Leonardi, C., De Oliveira, F.A.M., Knight, P.L.:

Effects of Broadband Squeezing on the Quantum Onset of Superradiance. Optics
Communications, 79 (1990), p. 377-380.

[12] Robinson, P., Maassen, H.: Quantum Stochastic Calculus and the Dynamical Stark
Effect. Reports an Math. Phys. Vol. 30 (1991).

[13] Waldenfels, W.v.: Spontaneous Light Emission Described by a Quantum Stochastic
Differential Equation. Lecture Notes in Mathematics 1136, Springer (1985),
p. 515-534.

[14] Waldenfels, W.v.: The Inverse Oscillator in a Heat Bath as a Quantum Stochastic
Process. Preprint 630. 1991. SFB 123 (Heidelberg).


