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HOW LONG DOES IT TAKE A TRANSIENT BESSEL PROCESS

TO REACH ITS FUTURE INFIMUM?

Zhan SHI

L.S.T.A. - URA 1321, Université Paris VI,
Tour 45-55, 4 Place Jussieu, F-75252 Paris Cede~ 05, Prance

shi~ccr.jussieu.fr

Summary. We establish an iterated logarithm law for the location of the future

infimum of a transient Bessel process.

1. Introduction.

Let { R(t); t > 0 } be a d-dimensional Bessel process, and let

(1.1) ~-~ ’
be the "index" of R (see Revuz &#x26; Yor [R-Y] Chap. XI). When d is an integer, R
can be realized as the radial part of an Revalued Brownian motion. We refer to

[R-Y] (Chap. XI) for a detailed account of general properties of Bessel processes. It
is known ([R-Y] p.423) that R is transient (i.e. limt~~ R(t) = oo almost surely) if
and only if d > 2. Unless stated otherwise, this condition will be taken for granted

throughout the note.

Define for t > 0,

03BE(t) = inf{ u ~ t : R(u) = inf R(s) } .

In words, for any given t > 0, ç(t) denotes the (almost surely unique) location of
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the infimum of R over [t, oo). Such random times have been first studied by Williams

( ~W 1~ and [W2]), who proved a path decomposition theorem at ~ (t) respectively in

case of Brownian motion and linear diffusions. Generalizations of Williams’ result

have since been established for Levy and more general Markov processes. See for

example Millar [M], Pitman [P], Bertoin [B] and Chaumont [C], and the references

therein.

This note is concerned with ç(t) as a process of t, and more particularly, we are

interested in the path property of t - ~(t). Of course, it is meaningless to study

its liminf behaviour, since there are infinitely many large t’s such that ç(t) = t.

Instead, we ask: what can be said about the limsup behaviour of ç(t)?

Theorem 1. For any non-decreasing function f > 0, we have

lim sup 03BE(t) tf(t) 
= 0 or ~, a.s.,

according as

7 t 

converges or diverges, where v is defined in (I.1).

Remark. In case R(0) = 0, there is also a "local" version of Theorem 1 for small

times t.

Theorem 1 is proved in Section 2. Some related problems are raised in Section 3.

2. Proof of Theorem 1. .

Without loss of generality, we assume R(0) = 0. Throughout the note, {X(t);

t > 0 } stands for a generic d-dimensional Bessel process starting from 1, independent

of R, and we denote by V the (almost surely) unique time when X reaches the

infimum over (0, oo). Observe that R and X almost have the same law, except that

R(0) = 0 whereas X(0) = 1. The process X being a linear diffusion with scale

function -x-2" (Revuz &#x26; Yor [R-Y] p.426), we obviously have

(2.1 ) 1P inf X (u)  x = 0  x  1.
u>0 /
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In order to prove Theorem 1, some preliminary results are needed. In the sequel,

~ > 1, J~i > 1 and ~2 > I denote unimportant unite constants. Their values,

which may change from line to line, depend only on d.

Lemma 1. For any t ~ 1, we have

(2.2) ?(V > ~) ~ A~,
where 03BD is defined m (1.1).

Proof of Lemma ~. We have

inf 
B 7 Bs> ~ o~~~ ’ ’7

inf 
L B ~x ou« / J

Given the value of X(~), the post-~ process + ~); ~ > 0} is ad-dimensional
Bessel process starting from ~(~), independent of {X(~); 0 ~ ~  ~}. Thus by

scaling and (2.1), we obtain

inf XM ~(~);0~~=f20142014 inf X(~))~.B5>~ 
B /~ - - ~ BX(~)o~« ’ ’7

Consequently,

(2.3) P(~)=E[(~~(.))"].
Since 1, we have

Applying a diffusion comparison theorem ([R-Y] Theorem IX.3.7) to square Bessel

processes, it is seen that ~(~) is stochastically bigger than ~(~) (which is intuitively
obvious, of course). Thus by scaling, this implies

P(v>i) ~E(R-~)) 
which yields the upper bound in Lemma 1, since ]E(R*~(1))  oo. To show the

lower bound, observe that by (2.3), for any A > 0,

~(~’) ~ ~[ 
~ inf > 1/2;  

B u>0 /

~ > 1/2) > A~t) ).
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Since IP(X(t) > > À0-1) = P(X(1) > A- 1/y~), we can choose
A so large that this probability is smaller than X (u) > 1/2~ . The lower
bound in Lemma 1 is proved. []

Lemma 1 will be used to obtain accurate estimates of the law of some functionals

of ~. Define for r > 0

= inf(t > 0 : R(t) = r },

the first hitting time of R at level r, which is (almost surely) finite. Since R(0) = 0,
the scaling property immediately yields that for any given r > 0, o((r) has the same
law as r2 ~ ( 1 ) . For notational convenience, we write in the sequel

03C3 ~ 03C3(1);

03BE03C3 ~ 03BE(03C3(1)).

The random variables o and 03BE03C3 play an important role in our proof of Theorem

1. Here we give a resume of their basic properties. The equivalence for the lower

tail of 03C3 is known. Recall that ([G-S]) lims-o  s) = 21-"/r(1 + v).
Therefore,

(2.4) ~ 0s1.
The exact upper tail of o~, which involves Bessel functions and their positive zeros,

was evaluated respectively by Ciesielski &#x26; Taylor [C-T] for integer dimensions d,
and by Kent [Ke] and Ismail &#x26; Kelker [I-K] for any d > 0. Their result implies the

following useful estimate for x > 1:

(2.5) IP ~ > x  exp(-~).
For the variable ~~, it follows from the strong Markov property of R +

t); t > 0 ~ is a d-dimensional Bessel process starting from 1 (thus behaving like the

process X), independent of cr. Since V is the location of the infimum of X over

(o, oo), this yields:

(2.6) is independent of T;

(2.7) ~ - 7 ~ V;



211

(" = ~ denoting identity in distribution). Our next preliminary result is on the joint
tail of ~ and 7.

Lemma 2. Let x > 2 and y ~ 1. Then

(2.8) IP(~- 
(2.9) IP(03BE03C3 03C3 > x; y > 03C3 > 1) ~ K-1x-03BD - e-y/K.

Proof of Lemma 2. According to our notation, V is independent of R (thus of r).
We have, by (2.6) and (2.7),

]P~ >~) =P(V>(~-1)~)
=P(v>(~-l)cr;~~ -l-~+p~>~-i)~~2014L-Y

Using (2.2) and (2.4), the above expression is

~ K1(x - 1)-03BDIE(03C3-03BD1l{03C3~1/(x-1)}) + IP(03C3  1 x - 1)
~ K1(x - 1)-03BDIE(03C3-03BD) + K1(x - 1)-03BD exp(-x - 1 2)

~ Kx-03BD,
the last inequality due to the fact that  oo (this is easily seen from (2.4)).
Therefore (2.8) is proved. To show (2.9), observe that by (2.6), (2.7), (2.2) and

(2.5), we have

P~>~>T>l~F~>~;~>l) -P(~?/)
= I?(V > (:r - > l) -P(o- ~ ~/)
~ ~(~ - 

~~’~’~-e’~~.

Lemma 2 is proved. []

Lemma 3. For any x ~ 2, we have

IP(~(1)>~) 
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Proof of Lemma 3. Conditioning on R(l) = ~ ~(1) - 1 has the same distribution

as a~V (this is easily seen from the Markov and scaling properties of R). Thus by
Lemma 1,

> z) = > ~ - 1)
~ IP(R(1) > +P(R~(1)V > ~ - 1; R(l)  
~ ?( sup R(t) > 

+ l)-E(R-~(l)~~~~r~ ).
Since  ~, the proof of Lemma 3 is reduced to showing the following

estimate:

(2.10) P( sup R(t) > i 

This is easily verified. Indeed, by scaling, we have, for any A > 0,

IP( sup R(t) > 03BB) =IP( sup R(t) > 1) = IP(03C3  1 03BB2).
Taking A = x - 1 and using (2.4), we obtain

P(" sup R(t) =pf7 2014L-)Bo~i i 7 B 

~~-l)~exp(-~-)
~ 

which yields (2.10). D

Proof of Theorem L We begin with the convergent part. Let f > 0 be non-

decreasing such that  ~. Thus f increases to infinity. Choose a

large initial value no and define tn = en for n ~ n0. By scaling and Lemma 3, we

have

P(~~)) =P(~(1) > 

=P(~(1)>~))
~ .
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Since

03A3f-03BD(tn) = 03A3 tntn-1 dt tn - tn-1f-03BD(tn) 
~ e e-1

03A3

tntn-1 dt tf-03BD(t)

= e e - 1
~tn0

dt tf-03BD (t)  ~,

the Borel-Cantelli lemma tells us that

lim sup 03BE(tn+1) tnf(tn) ~ 
1 a.s.

Since replacing f by a multiple of f does not change the test, an argument by

monotonicity readily yields lim I (t) = 0 almost surely. To verify the

divergent part of Theorem 1, pick an f such that Joo dt/t f v(t) diverges. Obviously
we only have to treat the case that f (oo) = oo. Choose a large ko, and define tk = e~

as before (it will be seen that tk is rather a space variable than a time variable, but

the notation should not cause any trouble). We shall consider a sequence of random

times in order to avoid dependence difficulty. Let

~(Q(tk)) > tk > > tk ~
for k > ko. By scaling and (2.9), we have

IP(Ek) = IP(03BE03C3 03C3 > f(t3k); tk > 03C3 >1) ~ K-1f-03BD(t3k) - exp(-tk/K).

Accordingly,

(2.11) f-03BD(t3k) ~ K IP(Ek) + Ke-tk/K.

Since 03A3~k=k0 f-03BD(t3k) = ~ and 03A3ke-tk/K  ~, the above estimate clearly implies

(2.12) 03A3IP(Ek) = ~.

To apply the Borel-Cantelli lemma, we need to check that the measurable events Ek

are almost independent. Let ko  ~. Denote by t) the time when R reaches

its minimum over (s, t) (thus ç(t) = oo) according to our notation). Write

JP(EkEd = lP E~; Eei  + 1P Ek; Eei ~ )
=Ai+A2,
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with obvious notation. Then

~1 - > > tki

~(~(t~)) - > (f (t~) -1) > te
- IP ~(te)) - > -1) ~

- > te (f (te) -1) ) .
Using the strong Markov property of R, it is seen that is independent

of Thus by scaling and (2.7),

P - °’(tk) > t~ ( f (t~) -1) ~ ~~ - a~ > -1
_ P > ~k(f (tk) -1) 1P V > -1
=1P V > f(t~)-1 1P V > 

(2.13) - 

the last inequality following from Lemma 1. Now let us evaluate 02. Clearly we

have

03942 ~ IP(03BE(03C3(tk)) > 03C3(tl)f(t3l); 03C3(tl) > t2l)
 ~ ~(~(tk)) - °’(tk) > (f (te) -1) > t~
- IP ~(~(tk)) - > -1) ) ,

which, by scaling and (2.7) and (2.2), implies

03942 ~ IP (03BE03C3 - 03C3 > (tl tk)2 (f(t3l) - 1)) ~ K1 (tk tl)203BDf-03BD(t3l)
(2.14) - 

Since IP(EkEl) = Ol + OZ, combining (2.13), (2.14) and (2.11) gives

 + + 

+ + 

Consequently,
n 2

£ £ 1P(EkEe)  K2 ~ (P(Ek) + )
k=ko

+ K2 1 - c-203BD 03A3(IP(Ek) + e-tk/K).
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Since 03A3kIP(Ek) = ~ and 03A3k e-tk/K  ~, this yields

lim sup 03A303A3IP(EkEl) / ( 03A3 IP(Ek))2 ~ K1  ~.

According to a well-known version of the Borel-Cantelli lemma (cf. [K-S]), this

implies IP(Ek, , i.o. ) > 1/ Kl. In particular, we have

> 1 > 3~i °
Using Bessel time inversion (which tells that { tR(1/t); t > 0 ~ is again a Bessel

process of dimension d) and Blumenthal’s 0-1 law, this probability equals 1. Since

replacing f by a multiple of f does not change the test, we have established the

divergent part of Theorem 1. []

3. Some related problems.

3.1. Theorem 1 is concerned with the location of the future infimum of R. A natural

question is to study also the location of the past supremum of a Bessel process R of

dimension d > 0. Let

= sup u  t : R(u) = sup R(s) .~ 

Thus is the location of the maximum of Rover [0, t]. Of course there are

infinitely many large t’s such that = t. What about the liminf behaviour of

r~(t)? In case d = 1 (thus R is a reflecting Brownian motion), the answer to this

question can be found in Csaki, Foldes &#x26; Revesz [Cs-F-R]:

(3.1) lim inf (log log t)2 t~
(t) = 03C02 4 a.s.

The corresponding problem for arbitrary dimension d remains open. Nonetheless,
some heuristic arguments suggest that the following Chung-type law of the iterated

logarithm might hold:

Conjecture. For any d > 0, we have

lim inf (log log t)2 t ~(t) = j203BD a.s.,
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where j" denotes the smallest positive zero of the Bessel function J~ of index v -

d/2 -1.

If the above Conjecture is true, by taking d = 1 we would recover (3.1), since

.7-1/2 = 7f/2.

3.2. There has been several recent papers devoted to the so-called Bessel gap, i.e.

the difference between the past supremum and future infimum of R (d > 2). See for

example Khoshnevisan [Kh]. It also seems interesting to investigate the difference

between the locations of the past supremum and future infimum of R, i.e. we propose

to study the process t ’2014~ ~(t) - r~(t). Since  t, it is seen that ~(t) - have

the same upper functions as ~(t), i.e. Theorem 1 holds for ~(t) - in the place

of ~(t).

What about the liminf behaviour of ~(t) - r~(t)? Obviously for any t > 0,

~(t)-r~(t) is (strictly) positive. A little more thinking convinces that with probability

one,

lim inf(03BE(t) - ~(t)) = 0.

It would therefore be natural to look for a liminf iterated logarithm law for t -

~(t) - 7~(1). This problem is raised by Omer Adelman (personal communication).
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