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Summary. We establish an iterated logarithm law for the location of the future

infimum of a transient Bessel process.

1. Introduction.

Let { R(t); t > 0} be a d-dimensional Bessel process, and let
(1.1) v=o—1,

be the “index” of R (see Revuz & Yor [R-Y] Chap. XI). When d is an integer, R
can be realized as the radial part of an IR%valued Brownian motion. We refer to
[R-Y] (Chap. XI) for a detailed account of general properties of Bessel processes. It
is known ([R-Y] p.423) that R is transient (i.e. lim¢_,o R(t) = oo almost surely) if
and only if d > 2. Unless stated otherwise, this condition will be taken for granted
throughout the note.

Define for ¢t > 0,
() =inf{u>t: R(u) = u;ft R(s)}.
8>

In words, for any given ¢ > 0, £(t) denotes the (almost surely unique) location of



208

the infimum of R over [t, 00). Such random times have been first studied by Williams
([W1] and [W2]), who proved a path decomposition theorem at &(t) respectively in
case of Brownian motion and linear diffusions. Generalizations of Williams’ result
have since been established for Lévy and more general Markov processes. See for
example Millar [M], Pitman [P}, Bertoin [B] and Chaumont [C], and the references

therein.

This note is concerned with £(t) as a process of t, and more particularly, we are
interested in the path property of t — £(t). Of course, it is meaningless to study
its liminf behaviour, since there are infinitely many large t’s such that £(t) = t.

Instead, we ask: what can be said about the limsup behaviour of £(t)?

Theorem 1. For any non-decreasing function f > 0, we have

. &(t)
Hmsup o)

[ 7w

converges or diverges, where v is defined in (1.1).

=0 or oo, a.s.,

according as

Remark. In case R(0) = 0, there is also a “local” version of Theorem 1 for small

times t.

Theorem 1 is proved in Section 2. Some related problems are raised in Section 3.

2. Proof of Theorem 1.

Without loss of generality, we assume R(0) = 0. Throughout the note, {X(t);
t > 0} stands for a generic d-dimensional Bessel process starting from 1, independent
of R, and we denote by V the (almost surely) unique time when X reaches the
infimum over (0, 00). Observe that R and X almost have the same law, except that
R(0) = 0 whereas X(0) = 1. The process X being a linear diffusion with scale
function —z~2¥ (Revuz & Yor [R-Y] p.426), we obviously have

(2.1) ]P(ig%X(u) <:1:) =2®, 0<z<l
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In order to prove Theorem 1, some preliminary results are needed. In the sequel,
K > 1, K; > 1 and K, > 1 denote unimportant finite constants. Their values,

which may change from line to line, depend only on d.

Lemma 1. For any t > 1, we have
(2.2) Kt < JP(V > t) < Kt™,

where v is defined in (1.1).

Proof of Lemma 1. We have
IP(V > t) = P(zngtX(s) < OéngtX(u))
= ]E[]P(éréftX(s) < oéﬁfng(u) lX(u); 0<u< t)]
Given the value of X(t), the post-t process { X(s +t); s > 0} is a d-dimensional
Bessel process starting from X (t), independent of { X(u); 0 < w < t}. Thus by
scaling and (2.1), we obtain

]P(igftX(s) <, inf X(u) lX(u); 0<u< t) = (YI(T)ngStX(u))Z.,.
Consequently,
2.3) P(V>t) =E[(%ngg)((u))”].

Since info<y<¢ X (u) < 1, we have

1 : 2” -2
B[ (ot X®) | <B(x™0).
Applying a diffusion comparison theorem ([R-Y] Theorem IX.3.7) to square Bessel

processes, it is seen that X (t) is stochastically bigger than R(t) (which is intuitively

obvious, of course). Thus by scaling, this implies
P(V > t) < E(R‘z”(t)) = t“"]E(R’z"(l)),

which yields the upper bound in Lemma 1, since E(R=2¥(1)) < oco. To show the

lower bound, observe that by (2.3), for any A > 0,

B(V>t) > B[ ( 3('1('5 odnt X (w) ) Vit xo1/3 X000V |

> (2,\)—2"t-"1p( inf X(u) > 1/2 X(t) < /\\/?)

> (2,\)”2"t"’(]P( inf X(u) >1/2) = P(X(t) > \VA) ).
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Since P(X (t) > AVt) <P(R(t) > AVE—1) =P(X(1) > A—1/+/t), we can choose
A so large that this probability is smaller than $IP(inf,»0 X (u) > 1/2). The lower

bound in Lemma 1 is proved. 0

Lemma 1 will be used to obtain accurate estimates of the law of some functionals

of £. Define for 7 > 0
o(r)=inf{t >0: R(t) =r},
the first hitting time of R at level r, which is (almost surely) finite. Since R(0) = 0,

the scaling property immediately yields that for any given r > 0, o(r) has the same

law as r20(1). For notational convenience, we write in the sequel

o=o(l);

€ =€(a(1)).
The random variables ¢ and £, play an important réle in our proof of Theorem
1. Here we give a résumé of their basic properties. The equivalence for the lower

tail of o is known. Recall that ([G-S]) lims—g s’e'/?*)P(c < s) = 217¥/T(1 + v).

Therefore,
(2.4) K"ls_"exp(——i) <IP(a<s) <Ks"’exp(-l) 0<s<1
’ 2s7 ~ - 2s”’ =

The exact upper tail of o, which involves Bessel functions and their positive zeros,
was evaluated respectively by Ciesielski & Taylor [C-T] for integer dimensions d,
and by Kent [Ke] and Ismail & Kelker {I-K] for any d > 0. Their result implies the

following useful estimate for x > 1:
z
(2.5) ]P(o>z) Sexp(——i).

For the variable &, it follows from the strong Markov property of R that { R(c +
t); t > 0} is a d-dimensional Bessel process starting from 1 (thus behaving like the
process X), independent of o. Since V is the location of the infimum of X over
(0, 0), this yields:

(2.6) £, — o is independent of o;
(2.7) &-o Qv
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(“ @ denoting identity in distribution). Our next preliminary result is on the joint

tail of &, and o.

Lemma 2. Let x > 2 and y > 1. Then

(2.8) IP(% >c) < Ke™,
(2.9) ]P(%—>z;y>a>1)2K'1:c“’—e‘y/K.

Proof of Lemma 2. According to our notation, V' is independent of R (thus of o).
We have, by (2.6) and (2.7),
£o _
]P(—; >a:) —]P(V > (a:——l)a)

=]P(V>(x—l)o;azw—_l_l)+]P(V>(x—1)o;a<-;—_1_—I).

Using (2.2) and (2.4), the above expression is

< Ky(z - 1)“’1E(0"’11{a21/(z—1)}) +]P(°' < xi 1 )

< Ko~ 1) B(r) 4 Kle = 1) exo(- 5

< Kz™",

the last inequality due to the fact that JE(c~) < oo (this is easily seen from (2.4)).
Therefore (2.8) is proved. To show (2.9), observe that by (2.6), (2.7), (2.2) and
(2.5), we have

P(%>x;y>a>1) 2P(%">zw>l)-lf’(02y)
=]P(V> (x—1)0; 0 > 1) —-]P(aZy)
> Ky(z— 1)_"1E(0'_"]1{a>1}) —e /K
> K 'z — e vk,

Lemma 2 is proved. 0

Lemma 3. For any = > 2, we have

]P(ﬁ(l) > w) < Kz7".
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Proof of Lemma 3. Conditioning on R(1) = z, £(1) — 1 has the same distribution
as 22V (this is easily seen from the Markov and scaling properties of R). Thus by

Lemma 1,

]P({(l) >z) =IP(R2(1)V >z 1)
SIP(R(1)> :c—l)+]P(R2(1)V>x-—l; R(l)S\/a:_—T)
S_]P( sup R(t)>\/;—_1)

0<t<1

+ Kl(m - 1)~VE(R—2V(1)H{R(1)S\/;_~1} ).

Since IE(R=2“(1)) < o0, the proof of Lemma 3 is reduced to showing the following

estimate:

(2.10) IP( sup R(t) > vz — 1) < Kyzx™".

0<t<1

This is easily verified. Indeed, by scaling, we have, for any A > 0,

IP( sup R(t)>/\)=]P( sup R(t)>1)=IP(0<i).

0<t<1 0<t<1/2? A2

Taking A = v/z — 1 and using (2.4), we obtain

IP( sup R(t)>\/5———1) :]P(g<_.1._)

0<t<1 z—1

< K(x—l)"exp(—x_l)

< K?-'E_ua

which yields (2.10). 0

Proof of Theorem 1. We begin with the convergent part. Let f > 0 be non-
decreasing such that [* dt/t f“(t) < oo. Thus f increases to infinity. Choose a
large initial value ny and define t,, = €™ for n > ng. By scaling and Lemma 3, we

have
tn

tmf(tn))

=P (£(1) > = f(ta) )
< Kf7(tn)-

P((£(tns1) > taf(ta) ) =P (1) >
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Since
> > tn dt e > in o dt
> = Y [ e s Y [ S
n=ng+1 n=ng+17in-1 tn = tn1 e-lnzn(ﬁ-l tn-1 :
e © dt
= —fV t
o<

the Borel-Cantelli lemma tells us that

. g(tn+l)
lim su <1 as.
nosoo tnf(tn) =

Since replacing f by a multiple of f does not change the test, an argument by
monotonicity readily yields limsup,_,., £(¢)/t f(t) = 0 almost surely. To verify the

divergent part of Theorem 1, pick an f such that [ dt/t f¥(t) diverges. Obviously

we only have to treat the case that f(co) = co. Choose a large ko, and define t;, = e*

as before (it will be seen that tj is rather a space variable than a time variable, but
the notation should not cause any trouble). We shall consider a sequence of random

times in order to avoid dependence difficulty. Let
Be = { &(o(t) > o(te) F(80); £ > o) > £} |,
for k > ko. By scaling and (2.9), we have
P(E) = ]P( %" > fE); te > 0 > 1) > K~157v(83) — exp(~tx/K).
Accordingly,
(2.11) V() < KIP(Ey) + Ke /K,
Since Y 32, f7¥(t3) = oo and Y, e~"*/K < 0o, the above estimate clearly implies
(2.12) > P(Ey) = 0.
k

To apply the Borel-Cantelli lemma, we need to check that the measurable events Ej
are almost independent. Let kg < k < £. Denote by £(s, t) the time when R reaches

its minimum over (s,t) (thus £(¢) = (¢, 00) according to our notation). Write

IP(ExE;) = ]P(Ek; Eg; &(o(t)) < U(te)) +]P(Ek; Ey; &(o(tx)) > a(t[))
= A] + Ag,
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with obvious notation. Then
A < IP(g(a(tk), o(te)) > o(te) F(E); o(t) > t3;
E(o(te)) — alte) > o(te) (F() — 1); o(te) > &)
P (o(te), olte)) - o(te) > () — 1);
E(o(te) - olte) > (F() — 1) ).

Using the strong Markov property of R, it is seen that (o (tk), o(te)) is independent
of £(o(te)) — o(te). Thus by scaling and (2.7),

A1<1P( (o (te), o(te)) - o(t) > (F@) —1) ) P(& —o > £(E) - 1)
< P(&(o(t) —o(t) > R(F6) - 1) ) P(V > £(E) 1)

_1P(V>f(t )-1)P(V>fE)-1)

(213) <K f (D),

the last inequality following from Lemma 1. Now let us evaluate A,. Clearly we

have

8o < P(lo(tr) > olta)f(E); olt) > 1)
< P((o(te) — o(t) > a(t) (F(8) = 1)s o(t0) > 1)
< (&) - olte) > E(FE) - 1)),
which, by scaling and (2.7) and (2.2), implies
8 <P(&—0> (¢ -1) < ()£
(2.14) < KifV(th)e —W k),
Since IP(EE;) = A1 + A, combining (2.13), (2.14) and (2.11) gives

P(ExEr) < Ka(P(Ex) + e~/ K)(P(Ey) +e/K)
+ Ko (P(Ex) + e—tk/K)e—zu(z-k)‘

Consequently,
S5 P(EE) 5}(2( S (P(Ex) + e~/ ))
ko<k<t<n k=ko
K, _
+ 1———2; E (]P(Ek) +e tk/K).

k=ko
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Since 3, IP(Ex) = 0o and 3", e~ /X < oo, this yields
n n n 2
limsup 3 Y P(EiEe) / ( Y IP(Ek)) < K < oo.
M0 k=ko =ko k=ko

According to a well-known version of the Borel-Cantelli lemma (cf. [K-S]), this

implies IP(Ek, i.0.) > 1/K;. In particular, we have

. £(t) 1
]P(h?lil:ptf(t) > 1) > E

Using Bessel time inversion (which tells that {¢tR(1/t); ¢ > 0} is again a Bessel

process of dimension d) and Blumenthal’s 0-1 law, this probability equals 1. Since
replacing f by a multiple of f does not change the test, we have established the
divergent part of Theorem 1. 0

3. Some related problems.

3.1. Theorem 1 is concerned with the location of the future infimum of R. A natural
question is to study also the location of the past supremum of a Bessel process R of
dimension d > 0. Let

n(t) = sup{ u<t: R(u)= sup R(s) }

0<s<t

Thus 7(t) is the location of the maximum of R over [0,t]. Of course there are
infinitely many large t’s such that n(t) = t. What about the liminf behaviour of
7(t)? In case d = 1 (thus R is a reflecting Brownian motion), the answer to this
question can be found in Csdki, Foldes & Révész [Cs-F-R]:

2

2
(3.1) lim inf g—o—g-l—og—t)—n(t) = %— a.s.

t— oo t
The corresponding problem for arbitrary dimension d remains open. Nonetheless,

some heuristic arguments suggest that the following Chung-type law of the iterated

logarithm might hold:

Conjecture. For any d > 0, we have

2
lim inf _______(log l;)g 9

t—oo

n(t) =342 as.,
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where 3, denotes the smallest positive zero of the Bessel function J, of index v =

dj2 - 1.

If the above Conjecture is true, by taking d = 1 we would recover (3.1), since

Jo12 =7/2.

3.2. There has been several recent papers devoted to the so-called Bessel gap, i.e.
the difference between the past supremum and future infimum of R (d > 2). See for
example Khoshnevisan [Kh]. It also seems interesting to investigate the difference
between the locations of the past supremum and future infimum of R, i.e. we propose
to study the process t — £(t) — n(t). Since n(t) < t, it is seen that £(t) — n(t) have
the same upper functions as £(t), i.e. Theorem 1 holds for £(¢) — n(¢) in the place
of £(t).

What about the liminf behaviour of £(t) — n(t)? Obviously for any ¢ > 0,
£(t)—n(t) is (strictly) positive. A little more thinking convinces that with probability

one,
litxgglf(g(t) - n(t)) =0.

It would therefore be natural to look for a liminf iterated logarithm law for ¢ —

€(t) — n(t). This problem is raised by Omer Adelman (personal communication).
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