Hirsch's integral test for the iterated brownian motion
Séminaire de probabilités de Strasbourg, Tome 30 (1996), pp. 361-368.
@article{SPS_1996__30__361_0,
     author = {Bertoin, Jean and Shi, Zhan},
     title = {Hirsch's integral test for the iterated brownian motion},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {361--368},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {30},
     year = {1996},
     mrnumber = {1459494},
     zbl = {0865.60066},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_1996__30__361_0/}
}
TY  - JOUR
AU  - Bertoin, Jean
AU  - Shi, Zhan
TI  - Hirsch's integral test for the iterated brownian motion
JO  - Séminaire de probabilités de Strasbourg
PY  - 1996
SP  - 361
EP  - 368
VL  - 30
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1996__30__361_0/
LA  - en
ID  - SPS_1996__30__361_0
ER  - 
%0 Journal Article
%A Bertoin, Jean
%A Shi, Zhan
%T Hirsch's integral test for the iterated brownian motion
%J Séminaire de probabilités de Strasbourg
%D 1996
%P 361-368
%V 30
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1996__30__361_0/
%G en
%F SPS_1996__30__361_0
Bertoin, Jean; Shi, Zhan. Hirsch's integral test for the iterated brownian motion. Séminaire de probabilités de Strasbourg, Tome 30 (1996), pp. 361-368. http://archive.numdam.org/item/SPS_1996__30__361_0/

Bertoin, J. (1996), Iterated Brownian motion and stable(1/4) subordinator, Statist. Probab. Letters. (to appear). | MR | Zbl

Burdzy, K. (1993), Some path properties of iterated Brownian motion, in: E. Çinlar, K.L. Chung and M. Sharpe, eds, Seminar on stochastic processes 1992 (Birkhäuser) pp. 67-87. | MR | Zbl

Burdzy, K. and Khoshnevisan, D. (1995), The level sets of iterated Brownian motion, Séminaire de Probabilités XXIX pp. 231-236, Lecture Notes in Math. 1613, Springer. | Numdam | MR | Zbl

Csáki, E. (1978), On the lower limits of maxima and minima of Wiener process and partial sums, Z. Wahrscheinlichkeitstheorie verw. Gebiete 43, 205-221. | MR | Zbl

Csáki, E., Csörgö, M., Földes, A. and Révész, P. (1989), Brownian local time approximated by a Wiener sheet, Ann. Probab. 17, 516-537. | MR | Zbl

Csáki, E., Csörgö, M., Földes, A. and Révész, P. (1995), Global Strassen-type theorems for iterated Brownian motions, Stochastic Process. Appl.59, 321-341. | MR | Zbl

Csáki, E., Földes, A. and Révész, P. (1995), Strassen theorems for a class of iterated processes, preprint. | MR

Deheuvels, P. and Mason, D.M. (1992), A functional LIL approach to pointwise Bahadur-Kiefer theorems, in: R.M. Dudley, M.G. Hahn and J. Kuelbs, eds, Probability in Banach spaces 8 (Birkhäuser) pp. 255-266. | MR | Zbl

Feller, W.E. (1971), An introduction to probability theory and its applications, 2nd edn, vol. 2. Wiley, New York. | Zbl

Funaki, T. (1979), A probabilistic construction of the solution of some higher order parabolic differential equations, Proc. Japan Acad. 55, 176-179. | MR | Zbl

Hu, Y., Pierre Loti Viaud, D. and Shi, Z. (1995), Laws of the iterated logarithm for iterated Wiener processes, J. Theoretic. Prob. 8, 303-319. | MR | Zbl

Hu, Y. and Shi, Z. (1995), The Csörgö-Révész modulus of non-differentiability of iterated Brownian motion, Stochastic Process. Appl. 58, 267-279. | MR | Zbl

Khoshnevisan, D. and Lewis, T.M. (1996), The uniform modulus of iterated Brownian motion, J. Theoretic. Prob. (to appear). | MR

Khoshnevisan, D. and Lewis, T.M. (1996), Chung's law of the iterated logarithm for iterated Brownian motion, Ann. Inst. Henri Poincaré (to appear) | Numdam | MR | Zbl

Pitman, J.W. and Yor, M. (1993). Homogeneous functionals of Brownian motion (unpublished manuscript).

Shi, Z. (1995), Lower limits of iterated Wiener processes, Statist. Probab. Letters. 23, 259-270. | MR | Zbl

Spitzer, F. (1964). Principles of random walks. Van Nostrand, Princeton. | MR | Zbl