Some polar sets for the brownian sheet
Séminaire de probabilités de Strasbourg, Tome 31 (1997), pp. 190-197.
@article{SPS_1997__31__190_0,
     author = {Khoshnevisan, Davar},
     title = {Some polar sets for the brownian sheet},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {190--197},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {31},
     year = {1997},
     mrnumber = {1478727},
     zbl = {0886.60039},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_1997__31__190_0/}
}
TY  - JOUR
AU  - Khoshnevisan, Davar
TI  - Some polar sets for the brownian sheet
JO  - Séminaire de probabilités de Strasbourg
PY  - 1997
SP  - 190
EP  - 197
VL  - 31
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1997__31__190_0/
LA  - en
ID  - SPS_1997__31__190_0
ER  - 
%0 Journal Article
%A Khoshnevisan, Davar
%T Some polar sets for the brownian sheet
%J Séminaire de probabilités de Strasbourg
%D 1997
%P 190-197
%V 31
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1997__31__190_0/
%G en
%F SPS_1997__31__190_0
Khoshnevisan, Davar. Some polar sets for the brownian sheet. Séminaire de probabilités de Strasbourg, Tome 31 (1997), pp. 190-197. http://archive.numdam.org/item/SPS_1997__31__190_0/

[A1] R.J. Adler (1981). The Geometry of Random Fields, Wiley, London | MR | Zbl

[A2] R.J. Adler (1990). An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Institute of Mathematical Statistics Lecture Notes-Monograph Series, Vol. 12 | MR | Zbl

[BBK] R.F. Bass, K. Burdzy AND D. Khoshnevisan (1994). Intersection local time for points of infinite multiplicity, Ann. Prob., 22, 566-625 | MR | Zbl

[BK] R.F. Bass AND D. Khoshnevisan (1993). Intersection local times and Tanaka formulas, Ann. Inst. Henri Poincaré: Prob. et Stat., 29, 419-451 | Numdam | MR | Zbl

[BG] R. Blumenthal AND R.K. Getoor (1968). Markov Processes and Potential Theory. Academic Press. New York | MR | Zbl

[C] X. Chen (1994). Hausdorff dimension of multiple points of the (N.d) Wiener process, Indiana Univ. Math. J.. 43(1), 55-60 | MR | Zbl

[DEK1] A. Dvoretsky, P. Erdös AND S. Kakutani (1950). Double points of paths of Brownian motion in n-space, Acta. Sci. Math. (Szeged), 12. 74-81 | MR | Zbl

[DEK2] A. Dvoretsky, P. Erdös AND S. Kakutani (1954). Multiple points of Brownian motion in the plane, Bull. Res. Council Israel Section F, 3, 364-371 | MR

[DEKT] A. Dvoretsky, P. Erdös, S. Kakutani AND S.J. Taylor (1957). Triple points of Brownian motion in 3-space. Proc. Camb. Phil. Soc., 53, 856-862 | MR | Zbl

[D1] E.B. Dynkin (1988). Self-intersection gauge for random walks and for Brownian motion, Ann. Prob., 16, 1-57 | MR | Zbl

[D2] E.B. Dynkin (1985). Random fields associated with multiple points of Brownian motion, J. Funct. Anal., 62, 397-434 | MR | Zbl

[E] W. Ehm (1981). Sample function properties of multiparameter stable processes, Zeit. Wahr. verw. Geb., 56, 195-228 | MR | Zbl

[E1] S.N. Evans (1987) Multiple points in the sample paths of a Lévy process, Prob. Th. Rel. Fields, 76, 359-367 | MR

[E2] S.N. Evans (1987) Potential theory for a family of several Markov processes, Ann. Inst. Henri Poincaré: Prob. et Stat., 23, 499-530 | Numdam | MR | Zbl

[FS-1] P.J. Fitzsimmons AND T.S. Salisbury (1989). Capacity and energy for multi-parameter Markov processes, Ann. Inst. Henri Poincaré: Prob. et Stat., 25, 325-350 | Numdam | MR | Zbl

[FS-2] P.J. Fitzsimmons AND T.S. Salisbury Forthcoming Manuscript.

[F] B. Fristedt (1995). Math. Reviews, review 95b:60100, February 1995 issue

[HaP] J. Hawkes AND W.E. Pruitt (1974). Uniform dimension results for processes with independent increments, Zeit. Wahr. verw. Geb., 28, 277-288 | MR | Zbl

[H] W.J. Hendricks (1974). Multiple points for transient symmetric Lévy processes, Zeit. Wahr. verw. Geb. 49, 13-21 | MR | Zbl

[K] J.P. Kahane (1985). Some Random Series of Functions, Cambridge Univ. Press, Cambridge, U.K. | MR | Zbl

[Ka] R. Kaufman (1969). Une propriété métrique du mouvement brownien, C.R. Acad. Sci. Paris, Sér. A, 268, 727-728 | MR | Zbl

[LG] J.F. Legall (1990). Some Properties of Planar Brownian Motion, Ecole d'été de Probabilités de St-Flour XX, LNM 1527, 111-235 | MR | Zbl

[OP] S. Orey AND W.E. Pruitt (1973). Sample functions of the N-parameter Wiener process, Ann. Prob., 1, 138-163 | MR | Zbl

[P] Y. Peres (1995). Intersection-equivalence of Brownian paths and certain branching processes, Comm. Math. Phys. (To appear) | MR | Zbl

[R1] J. Rosen (1995). Joint continuity of renormalized intersection local times. Preprint

[R2] J. Rosen (1984). Stochastic integrals and intersections of Brownian sheet. Unpublished manuscript

[R3] J. Rosen (1984). Self-intersections of random fields, Ann. Prob., 12. 108-119 | MR | Zbl

[S] T.S. Salisbury (1995). Energy. and intersections of Markov chains, Proceedings of the IMA Workshop on Random Discrete Structures (To appear) | MR | Zbl

[Sh] N.-R. Shieh (1991). White noise analysis and Tanaka formulae for intersections of planar Brownian motion, Nagoya Math. J., 122, 1-17 | MR | Zbl

[T1] S.J. Taylor (1986). The measure theory of random fractals. Math. Proc. Camb. Phil. Soc., 100. 383-406 | MR | Zbl

[T2] S.J. Taylor (19). Multiple points for the sample paths of a transient stable process, J. Math. Mech., 16, 1229-1246 | Zbl

[T3] S.J. Taylor (1966). Multiple points for the sample paths of the symmetric stable process, Zeit. Wahr. verw. Geb., 5, 247-264 | MR | Zbl

[V] S.R.S. Varadhan (1969). Appendix to "Euclidean Quantum Field Theory", by K. Symanzik. In Local Quantum Theory (ed.: R. Jost). Academic Press, New York

[W] W. Werner (1993). Sur les singularités des temps locaux d'intersection du mouvement brownien plan, Ann. Inst. Henri. Poincaré: Prob. et Stat., 29, 391-418 | Numdam | MR | Zbl

[Y] M. Yor (1985). Compléments aux formules de Tanaka-Rosen, Sém. de Prob. XIX, LNM 1123, 332-349 | Numdam | MR | Zbl