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Summary. We show that iterated stochastic integrals (in the Ito-sense) with re-
spect to the Brownian bridge on Rd give an explicit unitary isomorphism between
the symmetric Fock space over the Cd-valued square-integrable functions on the
unit interval having zero mean and the space of complex valued L2-functions on
based continuous loops on Rd.
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Introduction

The theory of Gaussian processes yields an identification of the space of square
integrable functions on a given probability space provided with a Gauss process
(Zt)tET with the sum of the symmetric tensor powers of the "Gauss space", the
closure of the span of the random variables Zt (see e.g. [HT], Kap. 5.8 or [N],
Ch.7). In the case of "normal martingales" the above identification is concretely
realized by means of multiple stochastic integration (see [DMM], pp.199). Motivated
by the important role recently played by loop spaces, especially with values in Rd
or compact Lie groups, and "holomorphic L2-sections" in appropriate line bundles
over them in mathematics and physics (see e.g. [BR] or [PS]), we consider here the
case of the Brownian bridge, which is only a semimartingale.

We show that iterated stochastic integrals with respect to the Brownian bridge
exist and yield a unitary isomorphism between the Fock space over square-integrable,
Cd-valued functions on the unit interval having mean zero and the space of C-valued
square-integrable functions on based paths in Rd ( "Wiener space" ). Since the Brow-
nian bridge is an adapted stochastic process that induces an isomorphism between
paths and loops, transporting the Wiener measure to the conditioned Wiener mea-
sure, this result implies an orthogonal decomposition of L2-functions on based loops
in Rd. We apply this Ito isometry in [GW] to give an analytically rigorous derivation
of the Virasoro anomaly in quantization of strings.
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The article is organised as follows:
In the first section we recall some notation and elementary facts about Gauss spaces
and associated reproducing kernel Hilbert spaces, adapted to the case of a Brownian
bridge. The second section relates the stochastic integrals of deterministic functions
with respect to a Brownian motion to those with respect to the particular Brownian
bridge, that we use to simulate based continuous loops.
In the final section 3 we state and prove the isometry between "mean-zero functions"
on simplices and the L2-functions on Wiener space by means of iterated stochastic
integrals with respect to the Brownian bridge of the second section.

Section 1: The Gauss space of a Brownian bridge
Let (5~,,~’, P) be a probability space with a R-valued Brownian bridge (Xt)tE(o,l)
from 0 to 0. On the probability space (~, ,~’, P) _ (Q x R,F ® B(R),P Q9 v),
where v denotes the probability measure on R, we have the
additional random variable Z, defined by Z(w, z) = z, who is independent of the
variables Xt, given by Xt(w, z) = Xt(w). A direct calculation shows that the process
Wt = Xt + tZ (t E [0,1]) is a Brownian motion on Q.
Denoting the Gauss spaces of Xt respectively Wt by Cj~ respectively Gw, we find
the following orthogonal decomposition:

(See e.g. [N] for the general theory of Gauss spaces). The map

u : : Gw -~ C~°n), u(V)(t) = E[V. Wtj
is a unitary isomorphism of the closed subspace Gw of ~’, P) onto its image
u ( G w) = the associated reproducing kernel Hilbert space (referred to as the
"reproducing Hilbert space" in the sequel). Since Wt is a Brownian motion, one
knows that sending h in Hw to i1 = f is a unitary isomorphism onto LZ ( [o,1~ ) .
Furthermore the inverse map is given as follows:

u-1 {h) = = Jw (h) = Jw ( f ),

the notation JW designing the stochastic integral with respect to lV (see e.g. [N]
for this fact).
It follows that u(Z)(t) = E[ZWt] = t corresponds to the constant function 1 in

L2([0,1]). Thus GX is isomorphic to L20([0, 1]), the space of L2-functions having
mean zero. Since dXt = dWt - W1dt, the isomorphism between L20([0, 1]) and GX
is given by a map JX, which consists in integrating a deterministic function with
respect to dX t. This operator J~ equals in fact the stochastic integral with respect
to Xt, as can be shown by either the general theory of enlargements of filtrations
(see e.g. [JY]) or by the estimates given below (see Proposition 2.2).
Remark. The above considerations extend easily to processes with values in Rd with
d > 1. For the sake of clarity of the exposition, we will nevertheless work in the
case d = 1.
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Section 2: Stochastic integration with respect to the "adapted" bridge
On the Wiener space Q = {w E C°(~0,1~, Rd) ~ ) o;(0) = 0} one has the natural
filtration 0t =  s  t}) associated to the Brownian motion Bt(w) = w(t) ,
and the Wiener measure P. We define a ( "adapted" ) Brownian bridge by setting
X~ = (1 - t) J~ ~ for 0  t  1 and Xi = 0. Let us recall that Xt is a continuous

semi-martingale and that Bt = Xt + fo It follows notably that the Xt
generate the same filtration as the Bt.
Since the law of Xt equals the conditioned Wiener measure, n together with X can
be looked upon as a substitute for the space of based, continous loops in R.
The above inversion formula implies that the Gauss spaces Gx and GB are equal.
"Pulling-back" Gx to G x , we know that Gx is isomorphic to Lo(~0,1~) by means of
an integration operator J~ with respect to X. The Gauss space GB being given by
stochastic integrals with respect to B based on L2 ( ~0,1~ ), we aim in this section for
an explicit description of the relation between the two "realizations" of G x = GB.
We prepare ourselves first with a lemma concerning deterministic L2-functions :

Lemma 2.1

(i) Let f be in L20([0, 1]), then lim03BE1(03BE0f(t)dt 1-03BE) = 0.

(ii) Let / E L2([0, 1]) and 03B3(f)(t) = t0 f(s) 1-sds, then 2~f~L2.

(iii) The operator a : L20([0, 1]) ~ L2([0, 1]), defined by

03B1(f)(s) = f(s) + 1 1-ss0 f(t)dt,
is a unitary isomorphism, whose inverse is given by ,Q( f ) = f - 03B3(f).
We omit the proof, who boils down to Hardy type estimates for the parts (i) and (ii)
(variants of the estimates can be found in the classical reference [HLP] and in [JY]
for related probabilistic purposes as in the text) and uses partial integration plus
convergence arguments on the boundary terms based on (i) and (ii) for the third
part.
We can now prove the fundamental relation.

Proposition 2.2
(i) For all f in L2 ( ~0,1~ ), the stochastic integral JX ( f ) = f o f(t)dXt t exists and JX
is a unitary isometry from Lo ( ~0,1~) to the Gauss space G x . .
(ii) A mndom variable Y in GB, realized as f10 fdBt with f in L2([0, 1]), equals
P-almost everywhere the random variable fo f(t)dXt with f(t) = ,Q( f ) (t)
= f(t) - t0f(s) 1-sds.

Proof. . Since f101. dXt = 0, we can restrict ourselves to f in L20([0, 1]).
For 0 ~ 03BE  1 integration-by-parts implies then:

03BE0 f(t)dXt = 03BE0 03B1(f)(t)dBt + (03BE0 f(s)ds) (03BE0 dBs 1-s).
The limit lim03BE~1 of the first term exists in L2 by the Ito isometry for B and the
fact that a ( f ) is in L2 ( (0,1~ ) by Lemma 2.1. The same lemma shows, again together



228

with the Ito isometry for B, that the limit of the second term vanishes. This shows
the existence of fo j(t)dXt as well as its P-a.e. equality to fo a( f )(t)dBt. . Since a
and ,Q are mutually inverse unitary isomorphisms and JB is isometric as well, the
other assertions of the proposition follow immediately. D

Remarks.

(1) The existence of JX as well as its unitarity can of course also be derived from
the analogous properties of J~ (see Section 1). We state the result nevertheless in
the above proposition since it follows effortlessly as a by-product of the proof of the
assertion (ii).
(2) The second assertion above can be restated by saying that the isomorphism

~([0,1]) ~ Gx = 

is realized by a and the respective stochastic integrals yield the corresponding rep-
resentations of elements of the Gauss space.

Section 3: Wiener chaos decomposition

The general theory of Gaussian processes gives an isomorphism between the sym-
metric Fock space over the Gauss space (or reproducing Hilbert space) of a Gaussian
process and the space of L2-functions of the given probability space (see again e.g.
[N]). We will show in this section that, for the Brownian bridge Xt considered in Sec-
tion 2, this unitary isomorphism onto (where .F =  s  1 } ) )
can be realized by means of iterated stochastic integrals with respect to X and based
on appropriate L2-functions on simplices. Similar results for normal martingales are
well-known (see e.g. [DMM]). We begin by assuring the existence of the iterated
integrals with respect to Xt.
Let Ln denote the n-simplex {(sl, ... , sn) E sl  ~ . ~  sn  1} in the
sequel.

Lemma 3.1 Let Fn in restriction to ~n of the n-fold symmetrization
f ® ~ ~ ~ ® f of a function f in L2 ( ~0,1~ ) . . Then the iterated integral

n times

JXt (Fn) = t0 (sn0 ... (s20 Fn(s1,...,sn)dXs1) dXs2 ... dXsn-1) dXsn
exists and is a continuous semimartingale.

Proof. The first chaos Yt = f~ f (s)dXs is already known to exist and is a continuous
semi-martingale. Writing now JX (Fn) as

t0 (sn0 ... (s20f(s1)dXs1) dYs2 ... dYsn

and recalling that the stochastic integral of a continuous semi-martingale with r e-

spect to a continuous semi-martingale is again a continuous semi-martingale (see
e.g. [HT]), the assertion follows by induction on n.

D
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Let us recall that the solution of the stochastic differential equation

d(EB(h)) = EB(h)h(t)dBt
for h in L2 ( ~0,1~ ) is explicitely given by

EB(h) = exp 0 
(see e.g. [DMM], XXI §1.11). This process is called the "exponential process with
respect to B based on h" and the random variable = EB(h) a "stochastic
exponential vector" .
The exponential process EX (h) = exp h(s)dXs - 2 fo and the expo-

nential vector EX (h) = Ei (h) enjoy similar properties as EB(h) and (see
[DMM], §1.9-1.11 for the case of the Brownian motion).
Lemma 3.2
Let h be in L2 ( ~0,1~ ), then

(i) d(Ex(h)) = Ex(h)h(t)dXt
(ii) Et (h) =1 + fo Es (h)h(s)dXs
(iii) EX (ah) _ 03BBn(03A3n h(sl) ... ... dXsn) for a E C. .

Proof.
(i) This assertion follows directly from (dXt)2 = dt and Ito’s formula.
(ii) Since = 1, the stochastic differential equation in Assertion (i) yields the
result.

(iii) This assertion is given by applying N + 1 times the Picard iteration scheme to
the equality in Assertion (ii) and the fact that El (ah) is analytic in the parameter
A. a

Lemma 3.3
For / in L2 ( ~0,1~ ) and f = ,Q( f ) in Lo ( ~0, l~ ) (see Lemma ~.1 (iii) for the definition
of the map ,0), we have equality of the corresponding exponential vectors :

.

Proof. Since 10 f (s)dBs = 10f(s)dXs by Proposition 2.2, it remains only to show
that fo = fo The latter equality follows now by observing that the
unitary isometry a is already defined over the reals. 0

Remark. Of course, we also have EX ( f ) = EB( f ) with / = a( f ).
We can now prove that the map JX is isometric :
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Lemma 3.4
Let f and g be in L20([0, 1]) and Fn = f ® ... ® f Gm = g ® ... ~ g)) their

n times m times

n-Iold ( respectively symmetrisation, viewed as functions on En (respectively
Em). Then we have
(i~ = 0 for n ~ m

= (Fn, n = m.

Proof. Let ~, ~ be in R. We have, by Lemma 3.2 (iii)

J (Fn) = / f(sn)dXs1 ... dXsn = 1 n!dn dn03BB|03BB=0 ~X(03BBf)x 

£n 1 dn h#0 

~x a

and analogously for Jx (Gm ).
By Lemma 3.3, the Itô-isometry for B, and Lemma 2.1 (iii), we have

_ (~B (~f ) ~ EB (~9))
= ~9)) = 9)) = 9)) ~ °

As a consequence, using again Lemma 3.2(iii), we get

To complete the description of L2(S~, ~’, P) by stochastic integrals with respect to
X, we define a suitable space of functions.

Definition 3.5
Let be identified with the restrictions to ~~ of symmetric functions in
L2(Cn), where Cn = denotes the unit cube. The space is defined as
the restrictions of those symmetric Fn in such that

10 Fn(sl, s‘)dsl = 0
Lebesgue-almost-everywhere in the parameter s’ = (s2 ..., in Cn_1.

Since finite sums of symmetric products of functions in Lo ( ~0,1 ~ ) are dense in
and JX preserves scalar products of symmetrizations by Lemma 3.4, Jx

is automatically extended to an isometry defined on all of One comple-
ments this by setting = C and = Fo for a constant Fo in 
It follows that JX is defined on the Hilbert space completion of’~ ’~
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Proposition 3.6
The map JX ~ ®,~>o Lo(~n) -~ LZ(~, P) , given by multiple stochastic integration
with respect to the process X, is a surjective isometry.
Proof. By Lemma 3.4 and the preceding discussion JX is an isometry, thus having
closed image. It suffices therefore to show that JX has dense image.
Let us recall that the set E L2 ( ~0, l~ ) } is dense in L2 (S~, P) (see e.g.
[DMM]). By Lemma 3.3 each exponential vector ~B( f ) is in the image of JX ,
indeed, by Lemma 3.2, we have

E$ (f ) (f ) = JX £ ~q n ,£ (I) = £ (I) = J ,

where f = ,Q( f ) (notation of Lemma 2.1) and Fn = f ® ~ ~ ~ ® f is, as in Lemma 3.4,
viewed as a function on En. Thus JX is surjective. 0

Remarks.

Taking care of scalar products on Fock spaces (see e.g. [M] for the right conventions)
one identifies Lo (~~ ) unitarily with the symmetric Fock space over Lo ( ~0,1~ ) .
Thus Proposition 3.6 gives the desired realization of the isomorphism of the Fock
space over the reproducing Hilbert space ~lX and L2 (S~, .~’, P) by means of stochastic
integrals.
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