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Abstract

We consider stochastic differential equations for which pathwise unique-
ness holds. By using Skorokhod’s selection theorem we establish various
strong stability results under perturbation of the initial conditions, coef-
ficients and driving processes. Applications to the convergence of succes-
sive approximations and to stochastic control of diffusion processes are
also given. Finally, we show that in the sense of Baire, almost all stochas-
tic differential equations with continuous and bounded coefficients have
unique strong solutions.

1 INTRODUCTION

We consider the following stochastic differential equation:

{dXt 
= 03C3 (t, Xt) dBt + b (t,Xt) dt

X0=x (1)

where ~ : : R+ x R~ 2014~ R~ 0 R’’and ~ : : R+ x R~ 2014~ R~ are measurable
functions, B is a given r-dimensional Brownian motion defined on a probability
space (~~ P) with a filtration 7t satisfying the usual conditions. Throughout
this paper we assume that equation (1) has a unique strong solution ~ (~) for
each initial value ~ ~ R~.
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It is a well known fact that if the coefficients are Lipschitz continuous, then
equation ( 1) has a unique strong solution Xt (x), which is continuous with re-
spect to the initial condition and coefficients. Moreover, the solution may be
constructed by means-of various numerical schemes.

Our purpose in this paper, is to study strong stability properties of the
solution of (1) under pathwise uniqueness of solutions and a minimal assump-
tion on the coefficients. Such minimal assumption ensures the existence of a
weak solution, and is either the continuity of b, y in the state variable [19], or
the uniform ellipticity of the diffusion coefficient [15]. . According to Yamada-
Watanabe’s theorem [22], existence of a weak solution and pathwise uniqueness
imply existence of a unique strong solution.

The paper is organized as follows. In the second section we study the varia-
tion of the solution with respect to initial data and parameters. Extension of the
above result to the Holder space is the subject of section 3. The fourth section
is devoted to the study of successive approximations. We know from the theory
of ordinary differential equations with bounded continuous coefficients that, the
uniqueness of a solution is not sufficient for successive approximations to con-
verge. Under pathwise uniqueness, we give a necessary and sufficient condition
for this convergence. Moreover, we introduce a class of moduli of continuity
for which the method of successive approximations converges, covering the re-
sults of many authors. . In the fifth section, we study the stability of solutions of
stochastic differential equations driven by continuous semi-martingales, with re-
spect to the driving processes. Note that we don’t suppose pathwise uniqueness
for the approximating equations, as it is usually done in the literature.

In section 6, we give an application to optimal control of diffusions. Namely
we prove that under pathwise uniqueness, the trajectories associated to relaxed
controls are approximated in L2- sense by trajectories associated to ordinary
controls. This result extends a theorem of S. Meleard [17] which is proved under
Lipschitz condition. Extension of some of the previous results to the case where
the coefficients are merely measurable, with uniformly elliptic diffusion matrix
is the subject of section 7.

At the end of this work, we prove that in the sense of Baire, almost all
stochastic differential equations with bounded continuous coefficients have unique
strong solutions.

The main tool used in the proofs is the Skorokhod selection theorem given
by the following

Lemma 1.1 (~11~ page 9) Let (S, p) be a complete separable metric ~pace,
Pn, n =1, 2, ... and P be probability measures on (S, ~3 (S)) such that Pn --+

P. Then, on a probability space P , we can construct ~valued random
variables Xn, n =1, 2, ..., and X such that:

(i) Pn = n =1, 2, ..., and P = X.

(ii) Xn converges to X, P ,almost surely.

We’ll make use of the following result, which gives a criterion for tightness
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of sequences of laws associated to continuous processes.
Lemma 1.2 ([11] page 18) Let (Xn (t)), n = 1, 2, ..., be a sequence of d-

dimensional continuous processes satiafying the following two conditions:
(i) 7here exist positive constants M and y such that E  M for

every n = 1, 2, .....

(ai) There exist positive constants a, ~(3, k = 1, 2, ..., such that:
E ~t~ - Xn ~ Mk It - for every vt and t, s E (0, k~ , (k = 1, 2, ...). .

Then there exist a subsequence a probability space and d-

dimensional continuous processes Xn,., k = 1, 2, ..., and X defined on it such
that .

1) The laws of nk and Xnk coincide.
2) (t) converges to X(t) uniformly on every finite tame interval P almost

surely. ,

2 VARIATION OF SOLUTIONS WITH RESP-
ECT TO INITIAL CONDITIONS AND PA-

RAMETERS

Definition 2.3 We say that pathwise uniqueness holds for equation (1) if when-
ever and (X’,B,(SZ,.~,P),.~t) are weak solutions of equa-
tion (1) with common probability space and Brownian motion B (relative to
possibly different filtrations) such that P[X0 = X’0] = 1, then X and X’ are
indistinguishable.

In the theory of ordinary differential equations with continuous coefficients,
uniqueness of solutions is sufficient for continuous dependence of the solution
with respect to the initial condition (3~. The following theorem gives the ana-
logue of the above result to the stochastic case.

Theorem 2.4 Let o (t, x) and b (t, x) be continuous functions satisfying the
linear growth condition: for each T > 0, there exists M such that:

~o (t, a)~ + (b (t, x)~  M (1 + for every t E ~0, T~ (2)

Then, if pathwise uniqueness holds for equation (1), we get:

lim E [sup |Xt (x) - Xt = 0, for every T > 0 .

~ 
-
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Proof Suppose that the conclusion of our theorem is false, then there exist
a positive number 03B4 and a sequence converging to x such that:

inf E [sup |Xt (xn) - Xt (x)|2] ~ 03B4. (3)
"~N [~y J

Let us denote by ~" (resp. X) the solution of (1) corresponding to the
initial data a~ (resp. ~).

By standard arguments from the theory of stochastic differential equations
([13], page 289) we can show that the sequence satisfies conditions

i) and ii) of lemma 1.2 with a = 4 and /3 = 1. Then there exist a probability
space (Q.~.jP) and a sequence of stochastic processes defined

on it such that:

a) The laws of and coincide for every ~ C N.

/?) There exists a subsequence ~~V~B~) converging to (~,y,B)
uniformly on every finite time interval jP-a.s.

If we denote by nt = 03C3 (ns,ns,ns;s~t) and t = cr (s,s,s;s~ t),
then and areBrownian motions.

According to property o:) and the fact that ~ and ~ satisfy (1) with initial
data ~ and :c, it can be proved ([15} page 89) that e N , V~ 0

==0.

In other words, J~~ satisfies the stochastic differential equation:

Writing similar relations, we obtain:

~=~+~ ~~~)~+/’~~~)~.
By using property (/?) and a limit theorem of Skorokhod [19] page 32, it

holds that

and  6 (, X;") fit 2014. / t (, X.) ~t in probability.
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Therefore X and Y satisfy the same stochastic differential equation (1), on
P , with the same Brownian motion Bt and initial condition x. Then,

by pathwise uniqueness, we conclude that Xt = Yt,’dt P a.s.

By uniform integrability, it holds that:

03B4 ~lim inf E sup |Xt (xn) - Xt (x)|2] lim inf E sup|nkt-nkt|2] =

= [sup |t-t|2]

which contradicts (3). II

We shall next state a variant of the first theorem. Let us consider a family of
functions depending on a parameter ~, and consider the stochastic differential
equation:

{ dXt = 03C3 (a, t, X03BBt ) dBt + b (a, t, X03BBt) dt ( 4)(4)X03BB0 =03C6(03BB) .

Theorem 2.5 Suppose that Q (a, t, x) and b (a, t, x) are continuous. Further
suppose that for each T > 0, and each compact set I~ there exists L > 0 such
that

i) sup (~Q (a, t, x)~ + L (I + uniformly 
tT

ii) lim sup sup " ~ (ao~ t~ x) t + - b (ao! t! x) I) = ~~
03BB~03BB0 x~K tT

iii) p (~1) is continuous at a = ~.
If pathwise uniqueness holds for equation (4) at 03BB0, we have:

lim E [ sup X03BBt - X03BB0t |
2] 
= 0 , for every T > 0 . 

’

Proof Similar to the proof of theorem 2.4. II
Remark 2.6 Though (4) need not have a pathwise unique solution for a ~

ao, nevertheless its solutions are continuous in the pammeter a at ~.
The same method may be applied to show the convergence of many ap-

proximation schemes such as Euler scheme, approximation by stochastic delay
equations ~fi~, the splitting up method ~7~ and polygonal approximation (12~ .
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3 EXTENSION OF THE RESULTS TO THE
HOLDER SPACE

Let a > 0 and denote by C° ([0, 1]; Rd) the set of 03B1-Hölder continuous functions

equiped with the norm defined by:

~f~03B1 = sup |f (t)|+ sup |(t)-f(s)| |t-s|03B1
It follows from [13], page 53 that the solutions of (1) are 03B1-Hölder continuous

for any a E ~0, 2 ~. Let X (resp. X"~ denote the solution of (1~ corresponding
to the intial condition x (resp. xn) and Yn = X - Xn .

Lemma 3.7 For any p > 1, 03B4 > 0 and any y  p-1 2p the following estimates

hold:

(i) sup E (t) - Yn (s)|2p ~ C (p) I t - s|p;
n

(ii) sup P sup > 6 )  c , b .
Proof Part ( )tis a consequence of Ito’s formula. (ii) is a simple consequence

of the Garcia-Rodemich-Rumsey lemma ((20~ page 49). 8
Proposition 3.8 Under the hypothesis of theorem 2.4 and for any a E

~, s > 4 we have:

. lim > ~)= 0"

Proof > e)  
1 

(t) - X (t)| > 2 +
+P (sup |Yn(t)-Yn(s)| |t-s|03B1 > § .

According to theorem 2.4, the first term in the right hand side goes to 0 as
n tends to -f-oo.

Let ~ > 0 such that a + ~  p 2 p 1 and let  > 0, we have

P(sup |Yn(t)-Yn(s)| |t-s|03B1 > ~ 2) = P(sup |Yn(t)-Yn(s)| |t-s|03B1 > ~ 2;|t-s| ) +
+P(sup |Yn (t)-Yn(s)| |t-s|03B1 > ~ 2 ; |t - s| > )

 P (sup |Yn(t)-Yn(s)| |t-s|03B1+~ > ~ 2 -~) +2P (sup |Xn (t) - X(t)| > ~ 4 03B1)

 C (~ 2 -~)
-2p 

+ 2P ( sup |Xn (t) - X (t) | > 4 /aa .

By taking ~C small enough and using theorem 2.4 we get the desired result. .
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4 PATHWISE UNIQUENESS AND SUCCES-
SI~TE APPROXIMATIONS

Let y and b as in theorem 2.4 and consider the stochastic differential equation
(1). The sequence of successive approximations associated to (1) is defined as
follows

Xn+1t =  03C3 (s, Xns)dBs + b(s,Xns)ds (5)Jo 

If we assume that the coefficients are Lipschitz continuous, then the sequence
(X") converges in quadratic mean and gives an effective way for the construction
of the unique solution X of equation (1) (see [11]). Now if we drop the Lipshitz
condition and assume only that equation (1) admits a unique strong solution,
does the sequence (X") converge to X? The answer is negative even in the
deterministic case, see (~4~ pp.114-124).

The aim of the following theorem is to establish an additional necessary and
sufficient condition which ensures the convergence of successive approximations.

Theorem 4.9 Let y cas in theorem 1.4. Under pathwise uniqueness
for (1), (X") converges in quadratic mean to the unique solution of (1 ) if
and only if X"+1 - X" converges to 0.

Lemma 4.10 Let (X") be defined by (5), 
1) For every p > l, sup E sup  

~n [tT J
2) For every T > 0 and p > 1, there constant C independant of n

such that for every s  t in (0, T], E [|Xnt - Xns|2p] ~ C |t - .

Proof 1) For all t > 0 and n > 1, we have

|Xnt|2p~C1[|x|2p+|t0b(s,Xn-1s)ds|2p|+ |t003C3(s,Xn-1sdBs| 2p].
By applying Holder’s inequality, it holds that

|t0b(s,Xn-1s)ds|2p~[(t0bi(s,Xn-1s)ds)2]p
~tp[t0 |b(s,Xn-1s)|2ds]p ~ t2p-1. t0 |b(s,Xn-1s)|2pds.

Burkholder Davis Gundy and Holder inequalities provide the following esti-
mate

E[sup|t003C3(s,Xn-1s)dBs|2p] ~ C2E [(T0
|03C3(s,Xn-1s)|2ds)p]

~C2Tp-1E[T0|03C3(s,Xn-1s)|2p ds ].
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Taking expectations, we obtain

E[sup |Xnt|2p] ~ C3 [|x|2p + C4ET0(|03C3|2p +|b|2p) (s,Xn-1s)ds].
By using the linear growth condition we get

E[sup|Xnt|2p]~ C5 (1 +|x|2p) + C5 T0 E[sup |Xn-1s|2p] dt

where the various constants Ck depend only on T, m, d.
Iteration of the last inequality gives

E L«r IXt I 
~ 
$ C5 1 + Ixl L + CT + 2! + .., + -n! .

Then sup E |Xnt|2p] ~ ~5 fl + exp(CT).

2) If we fix s  t in [0, TT], we may proceed as before to obtain

E [|Xnt - Xns|2p] ~ C6|t - f (i + E [sup|Xn-1v|2p]du).

Then by using the previous result, we get
E X~] ~ ~7 ~ - ~F ~ where 67 depends on :r,p, d, T. t!

Proof of theorem 4.9. Suppose that 2014 A~ converges to 0 and there
is some 03B4 > 0 such that

inf E[max|Xnt-Xt|2] ~03B4
~ J 

"

According to lemma 4.10, the family satisfies conditions

i) and ii) of lemma 1.2. Then by Skorokhod’s selection theorem, there exists
some probability space (Q,.F,P) carrying a sequence of stochastic processes

with the following properties:

i) the laws of and (~,X~,X,.B) coincide for each
7t~N,

ii) there exists a subsequence such that (x~,Z~,K~,J3~ con-
verges to uniformly on every finite time interval P a.s.

But we know that X~ converges to 0, then we can show easily that
X = Z, P a.s.

Proceeding as in the proof of theorem 2.4, we can show that

Z~ = j: + / 7 (~,X~) d~ + /~ (~,~~ ~;
= ~ + y T (~,~) + ~ (~~) ~

Taking the limit as t goes to --oo, it holds that
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~==~+/ cr~X.)~~~ &#x26;(~~)d~
~=.r+ / r(~~dB.+ ~ 6~~)~.

In other words~ ~ and V solve equation (1). Then by pathwise uniqueness
we have ~ = V, jP a.s.

Using uniform integrability, we obtain:

03B4 ~ lim inf E ) max = liminf E j max nkt|2]
= [max |t-t|2] J

which is a contradiction. N
Remark 4.11 Roughly speaking, under pathwise uniqueness, the series

03A3(Xn+1- X") converges if and only if (Xn+1- X") converges to 0.
As a generalization of the condition which S. Kawabata [14] has already

considered, we’ll assume the following:
Condition A 1) There exist measurable functions ~ and /? such that:

|03C3(t,x)-03C3(t,y)|2+|b(t,x)-b(t,y)|2~m(t)03C1(|x-y|2)
where m is in L1loc.
2) /9 is a continuous, non decreasing and concave function defined on R+

such that:

0+ du 03C1(u) = +~.7o+~M 
.

Theorem 4.12 Assume that y and &#x26; satisfy condition A. Then the succes-
sive approximations converge m quadratic mean to the unique solution o/ (1).

Proof Under condition A, it is well known that pathwise uniqueness holds
[22]. Now it is sufficient to prove that ~~ converges to 0 in quadratic
mean. Let

03C6n(t)=E[max|Xn+1x-Xns|2].
Using Doob and Schwarz inequalities, we have:

(8 + 2T) E f~’ jr (~ X~) - 7 ~+

+t0|b(t,Xn+1s)-b(t,Xns)|2ds].
Since 03C1 is increasing and concave, then:



175

~P~+i (t)  8 -+- 2Z’ ) 

Let y.~ the sequence defined by:

(t) = (8 + 2T) p (s)) (s) ds for every t E (0, 2’’~. .

By using a lemma in [4] page 114-124, see also (14~, it is possible to choose
a function u such that:

1) ~t ~ [0,T], u(t) ~ 03C60(t).

2) u(t) ~ (8 + 2T) t003C1(u)(s)).m(s)ds
Hence by induction we have: cp~ (8) (s) E N and the sequence ~~

is decreasing.
Let 03C8(t) = lim note that this convergence is uniform and 03C8 is

continuous and satisfies the equation:

03C8(t) = (8 + 2T) t0 03C1(03C8(s)).m(s)ds for every t ~ [0, T].

Condition A 2) implies that o = 0 and hence lim cpn (t) = 0. N

Some examples of functions which are not Lipschitz but satisfy condition
A2) are given by: .

(0  a  1)
or

(0  a  1).

Let us introduce a different class of moduli of continuity g (t, x) which are
not necessarily written in the form l (t) ,m (x), covering the classes considered
in [21], [8].

Let E be the set of functions g : : ]0, T~ x R+ --~ R+ satisfying:
i) g is continuous, non decreasing and concave with respect to the second

variable.

ii) lim g(t,0) = 0.

iii) If F : [0, T] --r R+ is continuous such that F(0) = 0 and

F(t)  .

Theorem 4.13 Let a and b be continuous functions satisfying the linecar
growth condition (2). Moreovef suppose that them exists g E ~ such that:

~a(t~~) -a(t~y)~2+~b(t,~) - b(t,y)~2 _ 9 ~t~ ~x-y~Z~
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Then pathwise uniqueness holds, and the sequence Xn converges in quadratic
mean to the unique solution of ~.

Proof 1) Pathwise uniqueness is an immediate consequence of the properties
of the function g.

Let us prove the convergence of successive approximations. According to

theorem 4.9, it is suflicient to prove that lim E max 2014 Xns|2] = 0
)o~« ’ ’ 

Let 
°

and

AT = {t ~ [0,T]; I lim 03C6n(t) = 0}.~ J

Since AT is a non empty subset (0 ~ AT), it is enough to establish that AT
is open and closed in [0, Tj. .

1) First step: AT is closed.
Let 0 ~ AT e > 0 and 03B4 ~ min(t1,~). Hence there exists to ~ AT

such that ~*
Since AT is an interval which contains 0 (because t 2014~ wn (t) is an increasing

function), it suffices to prove that:

lim E [ max 
~ ’ ~ J

By Doob inequality and the non explosion condition, there exists no ~ N
such that for any n ~ no :

E max !X~-X~ ~~+12(8+2T)~T(1+~)~~
where H = sup E sup  +00 (see lemma 4.10). This proves that

~ J
ti EAT-

2) Second step: AT is open.
Let to ~ AT 7~ 0 and to 7~ T.
We’ll prove that 3r > 0 such that to + ~ ~ AT, which means that 3r > 0

such that lim 03C6n (t) = 0 on [0, t0 + r[.
Since AT is an interval (and to ~ AT), it is sufficient to show that:

lim E .,

~oa« ’ ~ ~ ’ j
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It is easy to see that there exists a sequence of positive real numbers
decreasing to 0 as n goes to +00, such that:

E[ max |Xn+1s - Xns|2] ~ 3~n + ct , ~t ~ T - t0
to a to+r I

where c is a constant which depends only on T and x.
Let

M = sup ~g (t, v) : (t, v) E x + 2H~~
r = min T - )

We consider the following ordinary differential equation:

(*) { u’(t)  = g1 
(t, u (t)) t ~ [t0, t0 + r]

u(t0) = 0

with g1 (t,u (t)) = 3 (8 + 2T)g (t,u (t)).
Define the successive approximation for (*) by:

{ 
u0 (03C4) = 3~0 + 3 (8 + 2T) sup(c, M)(03C4 - t0)

un+1 (t) = 3~n+1 + 03C4t0 g1 (t, un (t)) dt.

It is obvious to see, by induction on n E N, that is a posi-
tive decreasing sequence. By using the monotone convergence theorem and the
continuity of gi we obtain:

u (T) = lim u~, (~) = lim ~~+ lim gl (t, u",_ 1 (t)) dt~-~+ao to 
" ’

= / / o ~ {t? ~ (t) ) ~
Since gi E E, then: M (r) = 0 Vr E [to to + T~. .
Let

(t) - IX8 +Z ,_ s ] .
We remark that (t) is majorized by un, (t) on [to, t0 + r]. Therefore

lim (t) = 0, which implies that lim 03C6n (t) = 0 on [t0, t0 + r].

This achieves the proof. []
We recall a condition given by S. Nakao, which guarantees pathwise unique-

ness, but under which the problem of convergence of successive approximations
is not solved.

y and bare R-valued measurable, bounded functions and a is of bounded
variation such that y _> ~ for some ~ > 0.

The problem of convergence of successive approximations is still open for an
important class of stochastic differential equations involving the local time of
the unknown process.
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5 STABILITY OF STOCHASTIC EQUATIONS
DRIVEN BY CONTINUOUS SEMI MAR-
TINGALES

In this section, we consider stochastic differential equations driven by continuous
semi-martingales. We establish a continuity result with respect to the driving
processes when pathwise uniqueness of solutions holds.

Let b : (0,1~ x Rd --~ R~ and a [0,1] x Rd --~ be bounded continuous
functions.

We consider the stochastic differential equation:

{ dXt = 03C3 (t Xt) dMt + b (t, Xt) dAt (6)X0 = x

where At is an adapted continuous process of bounded variation and Mt is a
continuous local martingale.

Definition 5.14 Pathwise uniqueness property holds for equation (6) if
whenever (X, M, A, (S~, .~’,P~ , .~t) and (X’, M’, A’, (S~, .~’,P) , .~t) are two weak
solutions such that (M, A) = (M’, A’) P a.s, then X = X’ P a.~.

Let (Mn) be a sequence of continuous (.~’t, P) -local martingales and (An)
be a sequence of ,~~-adapted continuous processes with bounded variation.

We consider the following equations:

dXnt=03C3(t,Xnt)dMnt+b(t,Xnt)dAnt (7)Xno = x.

Let us suppose that (A, A’~, M, M’~) satisfy the following conditions:
(HI) The family (A, A", M, M~‘) is bounded in probability in C (~0, l~)4 .
(H2 ) M" - M --~ 0 in probability in C ( ~0, l~ ) .
(H3 ) V ar (An - A) --~ 0 in probability.
(V ar means the total variation) .
Theorem 5.15 If conditions H~, H2, H3 are satisfied and if pathwise unique-

ness holds for equation (6) then:

For any e > 0, lim P sup Xt~ > ~ = 0.
t 1 J

We need the following lemmas given in [9]. .
Lemma 5.16 Let (t) , f (t) : t E (0, l~ } be a family of continuous pro-

cesses and let (t) , C (t) : t E ~0, l~~ be a family of continuous processes of
bounded variation. Assume that:

lim In = f in probability in C (~0, l~).



179

lim c~ = C in probability an C (~o, ll)..
{Var {Cn ) ; n E N} is bounded in probability.
Then the following result holds:

i i

dE>0, , lim P sup fdC >~ =0.
° t  1 ) 0 0 ) ]

Lemma 5.17 Consider a family of filtrations {Ft‘) , {Ft) satisfying the usual
conditions. Let {fn (t) , f (t) : t E (o, 1]} be a sequence of continuous adapted
processes and tet {Nn (t) , N (t) : t E [0,1]} be a sequence o f continuous local
martingales with respect to (Ft‘) , (Ft) respectively. Suppose that

Iim f n = f in probability in C ([0,1]).
n-;+oo

lim Nn, = N in probability in C ([0,1]).
Then 

~ 

de > 0 , , lim P sup f ~ dNn - fdN > e = o.
~-~+~ ~ ~ , o 0 ~ 

Proof of theorem 5.15. Suppose that the conclusion of our theorem is
fal.se. Then there exists ~ > 0 such that

inf P[~Xn - X~~ > ~] ~ ~ .

It is clear that the family Zn = (Xn, X, An, A, Mn, M) is tight in
~C ( ~0, T~ ; 6. . Then by Skorokhod’s theorem, there exist a probability space
(S~’, ~’’,P’) and Z’n = X’~‘, X’~, An, M’~ which satisfy

i) law (Z~) = law (Z’’~) 
.

it) There exists a subsequence (Z’nk ) denoted also by (Z"~ ) which converges
P’ a.s in C (0, T~ ; Rd g to Z’ = X’, X, A’ > A > M’ > N~ . 

’

Let denotes the completion of the 03C3-algebra generated by Zmt (t ~ [0, 1])
F’nt = ~ Gns.

8~t

In an analogous manner we define the ~-algebra (.~t; t E ~0,1~) for the limit-
ing process Z’. Then (03A9’,.F’,F’nt, P’) (resp. (03A9’,F’mF’t, P’)) are stochastic bases
and M’~ (resp. Mt, Mt) are .~’tn continuous local martingales.
The processes X’’~ and X’~ satisfy the following s.d.e :

{dX’nt = 
03C3 (t,X’nt)dM’nt + b (t, X’nt)dA’nt (8)X’n0 = x

dXnt = 03C3 (t, nt) dMnt + b (t, Xnt)dAnt (9)(9)
n0 = x
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on (SI’, .~’’, .~’t", P’).
By using lemmas 5.16 and 5.17, we see that the limiting processes satisfy

the following equations:

f dXt 
= Q (t, Xt) dMt + b (t, Xt) dAt

X’0 = x
{ dXt = 03C3 (t, Xt) dMt + b (t,Xt) dAt

X0 = x.

By using hypothesis (H2) and (H 3), it is easy to see that M’ = M and

A’ = A, P’ a.s .
Hence by pathwise uniqueness, X’ and X are indistinguishable. This con-

tradicts our assumption. Therefore X’~ converges to the unique solution X.
N

6 AN APPROXIMATION RESULT IN STO-
CHASTIC CONTROL

In this section, we use the ideas developped in section 2, to establish an LZ-
approximation result for relaxed control problems, where the controlled process
evolves according to the Ito stochastic differential equation

{dXut = 03C3(t,Xut)dBt + b(t,Xut,ut)dt (10)Xu0 = x

where u is a predictable process with values in a compact Polish space E.
The cost to be minimized over the class U of E-valued predictable processes

is defined by:

J (u) = E ,Ut)dt + 9 (X i ) . .
An optimal control u. is a process belonging to U, such that:

J (u* ) = min tJ (u) : u e U}. .

Usualy an optimal control in the class U does not exist, unless some con-
vexity assumptions are imposed ([5]). . Thus, we transform the initial problem
by embedding the class U into the class 7Z of relaxed controls which has good
compactness properties.

Let V be the set of probability measures on [0,1] x E whose projections on
[0,1] coincide with the Lebesgue measure dt. V is equiped with the topology of
weak convergence of probability measures.
V is a compact metrisable set. .
Definition 6.18 A relaxed control q is a mndom variable with values in

the set V.
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Remark 6.19 1 ) Every relaxed control q can be desintegrated as
q (w, dt, da) = dt.q (w, t, da), where q (w, t, da) is a predictable process with ualues
in the space of probability measures on E.

2) The set U of ordinary controls is embedded into the set R of relaxed
controls by the application (t : : U -~R, u = (da)
where 03B4a is the Dirac measure at a.

For a full treatment of relaxed controls see [5]. .
Lemma 6.20 (Chattering lemma) Let q be a relaxed control, then there

exists a sequence of predictable processes u" with values in E such that the
sequence (da) converges to dt.q (w, t, da) P a.s.

Proof. See [5}. N
Let us now define the dynamic and the cost associated with a relaxed control

q E R. For q E R, we denote by Xq the solution of:

{dXqt = 03C3(t,Xqt)dBt + E b(t,Xqt,a)q(t,da)dt (11)
Xq0 = x.

The cost associated to (q, xq) is given by:

J (q) = E [10 El(t,Xqt,a)q(t, da) dt + g (Xq1)] .

Because of the compactness of the space V, it is proved in .[5] that an op-
timal control exists in the class R of relaxed controls (even when the control
enters in the diffusion coefficient r). Moreover under uniqueness in law, it is
established that the family of laws of (da) is dense in the set of
laws of (dt.q (t, da) on R x C (R+ and:

inf ~J(u) : u E U~ = inf ~J(q) : q E R~.

We give now our approximation result, extending a theorem proved in [17]
(where the. coefficients b, y are supposed to be Lipschitz continuous in the space
variable). . The novelty of our result is that the approximation procedure remains
valid under any conditions on 03C3 and b ensuring pathwise uniqueness.

Assume the following conditions:
b : R+ x Rd x E ---~ Rd

are continuous functions such that:

sup ~1~ + ~~ + da E E.
t1

Theorem 6.21 Let q be a relaxed control and X q be the corresponding
solution of (11 ). Then if pathwise uniqueness holds for equation (11), there
exists a sequence(un)n~N of E- valued predictable processes such that:



182

1) (da) converges to P a.s in V.

2 ) lim E sup Xt ‘2 = o.
t 1 

Proof. 1) Let q E R, by lemma 6.20, there exists a sequence C U such

that qn = (da) converges to dt.q (t, da) P a.s in V.
2) Let Xqt the solutions of (10) and (11) associated with un and q.

Suppose that 2) is false, then there exists 6 > 0 such that:

(H) inf E sup t 2 > 6.
~ 1 J

From lemma 1.2 and compactness of V, the family of processes ~’~ =
is tight in the space V2 x C3, where C denotes the space

of continuous functions from [0,1] into Rd endowed with the topology of uni-
form convergence. By Skorokhod’s theorem, there exist a probability space
(f Z’, ~’’, P’j carrying a sequence ~y’~ = (q"~, v’n, Y’", B’’~) such that

i) For each n E N, the laws of coincide.

ii) There exists a subsequence which converges to y’ P’ a.8 on the space
V2 x C3, where y’ = (q’, v’, X’, Y’, B’).

We assume without loss of generality that ii) holds for the whole sequence
(~yr") . By uniform integrability we have:

b _lim inf E sup Xt ~2 = lim inf E’ sup yt’’~ ~2J nEN J
= E’ where E’ is the expectation with respect to P’.

1 J
By property i) we see that X’n and Y’n satisfy the following equations

{ dX’nt = 03C3 (t,X’nt) dB’nt + E b (t, X’nt,a) q’n (t, da)dt (12)

X’n0 = x

{dX’nt = 03C3(t,Y’nt)dB’nt|Eb(t,Y’nt,a)v’n(t,da)dt (13)
Y’n0 = x.

By letting n going to infinity and using Skorokhod’s limit theorem ~19) page
32, we see that the processes X’ and Y’ satisfy equations (12) and (13) respec-
tively, without the index n.

We know by 1) that q" -~ q in V, P a.s, then the sequence (q", q) converges
to (q, q) in V2. Moreover law(q", q) =1aw(q’n, v’~) and (q’", v’n) --~ (q’, v’), pr
a.8 in V2. Therefore law(q’, v’) = law(q,q) which is supported by the diagonal
of V~. Then q’ = v’ P’ a.s.

It follows that X’ and Y’ are solutions of the same stochastic differential

equation driven by Brownian motion B’. Hence by pathwise uniqueness we
have X’ = Y’, P’ a:8, which contradicts 
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7 CASE WHERE THE COEFFICIENTS ARE
NOT CONTINUOUS

In this section we drop the continuity assumption on the coefficients, neverthe-
less we suppose that d == r and satisfy the following conditions.

a) y and &#x26; are Bore! bounded functions.

b) 3A > 0, such that V(~,~) ~ R~ x R~ x e~(~)$ > ~ !~.
Theorem 7.22 Suppose that y (t,x) and b(t,x) satisfy conditions a) and

b). If pathwise uniqueness holds for equation (1), then the conclusion of theorem
2.4 remains valid without the continuity assumption.

Proof. The proof goes as in theorem 2.4, the only difficulty (due to the lack
of continuity of &#x26; and r) is to show that

t0 03C3(s,nks) dnks ~ t003C3(s,s)ds in probability,

~ &#x26; (~ 2014~6 ~ in probability.

For ~ > 0, we have

~~~[K~~")~-/~(~~~ 
~lim sup P[|t0 (03C3(s,nks) - 03C3(s,s))dnks| > ~ 2]

+ lim sup P[|t003C3(s,s)dnks - t003C3(s,s)ds| > ~ 2].
It follows according to the Skorokhod limit theorem [19] page 32, or lemma

3, chapter 2 in [15] that the second term in the right hand side is equal to 0.
Let 03C303B4 (t,x) = 03B4-d03C6(x/03B4) *03C3(t,x) where * denotes convolution on Rd and

~ an infinitely differentiable function with support in the unit ball such that

Applying Chebyshev and Doob inequalities, we obtain

~[~(~’~)’~~’))~~]
~ ~E ~ ~ y (~ ~
~H~H~~)-~~~~~
+~ ~ p («, ~) ~ ~
+~ /~ ~(~~)-T(~~)~U=-~~+7~+73).
It follows from the continuity of ~ in T and the convergence of Xj’" to ~

uniformly P a.s, that /z goes to 0 as A; ~ +~ for every 03B4 > 0 .
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On the other hand we know that for each p > 1, sup E sup  +00
k t T J

then lim P sup > M = 0. Therefore, without lose of generality we
tT 

°

may suppose that Qa, Q have compact support in (0, T~ x B (0, M) .
Applying Krylov’s inequality ((15~, chapter 2, theorem 3.4 ), we obtain

I1 + I3 _ Q~~d+1l~, , where N does not depend on 6, 1~ and ,~.~~d+1,M
denotes the norm in ( j0, 3’~ x B (o,1~I )). .

By letting ð --~ 0, we obtain the desired result. .
A similar claim holds for the integrals involving the drift terms. This achieves

the proof. II
By using similar techniques, one can show the following
Theorem 7.23 Suppose that Q (t, x) and b (t, x, a) satisfy conditions a) and

b). Moreover suppose that a ---~ b (t, x, a) is continuous. If pathwise uniqueness
holds for equation ( 11), then theorem 6.21 r~emains valid.

8 GENERICITY OF EXISTENCE AND UNI-

QUENESS
As we have seen in previous sections, pathwise uniqueness plays a key role in
the proof of many stability results. It is then quite natural to raise the question
whether the set of all nice functions (a, b) for which pathwise uniqueness holds
for stochastic differential equation is larger than its complement, in a
sense to be specified. To make the question meaningful let us recall what we
mean by generic property. ,

A property P is said to be generic for a class of stochastic differential equa-
tions F, if P is satisfied by each equation in F - A, where A is a set of first
category (in the sense of Baire ) in F. Results on generic properties for ordinary
differential equations seem to go back to an old paper of Orlicz ~18~ , see also ~1~~. .
The investigation of such questions for stochastic differential equations is car-
ried out in [1], [10]. . In this section, we show that the subset of continuous and
bounded coefficients for which pathwise uniqueness holds for equation e(x, y, b)
is a residual set. The proof is based essentially on theorem 2.5. Moreover it

does not use the oscillation function introduced by Lasota &#x26; Yorke in ordinary
differential equations and used in stochastic differential equations 

Let us introduce some notations.

e(x, Q, b) stands for equation (1) corresponding to coefficients ~, b and initial
data x.

M2 = {03B6 : R+  03A9 ~ Rd, continuous and ~T > 0, E[ sup|03BEt|2]  +~}

Define a metric on M2 by:
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d (03BE1, 03BE2) = +~n=12-n (Esup|03BE1t-03BE2t|2)1 2 1+(Esup|03BE1t-03BE2t|2)1 2

y
By using Borel-Cantelli lemma, it is easy to see that ~M~, d~ is a complete

metric space.
Let Cibe the set of functions b : R+ x Rd --~ Rd which are continuous and

bounded. Define the metric pi on Ci as follows:

03C11 (b1,b2) = 03A3 2
-n

~b1 - b2~~,n 1 + ~b1 - b2~~,n

where = sup .

’ 

Note that the metric pi is compatible with the topology of uniform conver-
gence on compact subsets of R+ x Rd.

Let C2 be the set of continuous bounded functions u x Rd ---~ Rd ® R’’
with the corresponding metric p2.

It is clear that the space 9t = Ci  C2 endowed with the product metric is a
complete metric space.

Let L be the subset of 9t consisting of functions h(t, x) which are Lipschitz
in both their arguments.

Proposition 8.24 a dense subset in ~.
Proof. By truncation and regularisation arguments. t
The main result of this section is the following

Theorem 8.25 7he subset U of R consisting of those (o, b) for which path-
wise uniqueness holds for e(x, o, b) is a residual set.

Lemma 8.26 For each(03C3, b) E L and e > 0, there exists b (e) > 0 such that
for every (u’, b’) E B ((o, b) , ~) and every pair of solutions X, Y of e(x, o’, b’)
(defined on the same probability space and Brownian motion ), we have
d (X, Y)  e.

Proof Let Z be the unique strong solution of e(x,u, b) defined on the same
probability space and Brownian motion B.

d (X, Y)  d (X, Z) + d (Z, Y), the result follows from the continuity of Z
with respect to the coefficients (see theorem 2.5). tt

Proof of theorem 8.25 We put ? = n U B ( (o, b) , b ( k ~ ~ .~’~ ~// ’

y is a Ga dense subset in the Baire and for every (u,b) E ~
pathwise uniqueness holds for It follows that U is a residual subset in

Remark 8.26 M.T. Barlow [2] has shown that ~t - ~ is not empty.
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