Homogeneous diffusions on the Sierpinski gasket
Séminaire de probabilités de Strasbourg, Volume 32  (1998), p. 86-107
@article{SPS_1998__32__86_0,
     author = {Heck, Matthias K.},
     title = {Homogeneous diffusions on the Sierpinski gasket},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {32},
     year = {1998},
     pages = {86-107},
     zbl = {0917.60073},
     mrnumber = {1655146},
     language = {en},
     url = {http://www.numdam.org/item/SPS_1998__32__86_0}
}
Heck, Matthias K. Homogeneous diffusions on the Sierpinski gasket. Séminaire de probabilités de Strasbourg, Volume 32 (1998) , pp. 86-107. http://www.numdam.org/item/SPS_1998__32__86_0/

1. Barlow, M.T. and Perkins, E.A. (1988). Brownian motion on the Sierpinski gasket. Probab. Theory Related Fields 79, 543-623. | MR 966175 | Zbl 0635.60090

2. Bochner, S. (1955). Harmonic analysis and the theory of probability, Univ. of California Press, Berkeley. | MR 72370 | Zbl 0068.11702

3. Goldstein, S. (1987). Random walks and diffusions on fractals. In: Kesten, H. (ed.)Percolation theory and ergodic theory of infinite particle systems. (IMA Math. Appl., vol.8.) Springer, New York, p. 121-129. | MR 894545 | Zbl 0621.60073

4. Hattori, K., Hattori, T. and Watanabe, H. (1994). Asymptotically one-dimensional diffusions on the Sierpinski gasket and the abc-gaskets. Probab. Theory Related Fields 100, 85-116. | MR 1292192 | Zbl 0808.60067

5. Heck, M. (1996). A perturbation result for the asymptotic behavior of matrix powers. J. Theoret. Probability 9, 647-658. | MR 1400592 | Zbl 0947.60502

6. Karlin, S. (1966). A first course in stochastic processes. Academic Press, New York. | MR 208657 | Zbl 0177.21102

7. Kumagai, T. Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket. In: Elworthy, K.D. and Ikeda, N. Asymptotic Problems in Probability Theory, Pitman. | Zbl 0787.60100

8. Kusuoka, S. (1987). A diffusion process on a fractal. In: Ito, K. and Ikeda, N. (eds.) Symposium on Probabilistic Methods in Mathematical Physics. Proceedings Taniguchi Symposium, Katata 1985. Academic Press, Amsterdam, p. 251-274. | MR 933827 | Zbl 0645.60081

9. Lindstrøm, T. (1990). Brownian motion on nested fractals. Mem. Amer. Math. Soc. 420. | MR 988082 | Zbl 0688.60065

10. Mode, C.J. (1971). Multi type branching processes, American Elsevier Publishing Company, New York.