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A Bipolar Theorem for L0+(03A9,F,P)

W. BRANNATH AND W. SCHACHERMAYER

ABSTRACT. A consequence of the Hahn-Banach theorem is the classical bipolar the-
orem which states that the bipolar of a subset of a locally convex vector space equals
its closed convex hull.

The space L° (S~, ~’, ~) of real-valued random variables on a probability space
(~, .~’, ~) equipped with the topology of convergence in measure fails to be locally
convex so that - a priori - the classical bipolar theorem does not apply. In this

note we show an analogue of the bipolar theorem for subsets of the positive orthant

L+(S~, .~’, if we place L,°~ (S2, .~, ~) in duality with itself, the scalar product now
taking values in [0,oc]. In this setting the order structure of ~) plays an
important role and we obtain that the bipolar of a subset of L+(5~,.~, IF) equals its
closed, convex and solid hull.

In the course of the proof we show a decomposition lemma for convex subsets
of into a "bounded" and a "hereditarily unbounded" part, which seems

interesting in its own right.

1. . The Bipolar Theorem

Let (H, ~, P) be a probability space and denote by .F, P) the vector space of
(equivalence classes of) real-valued measurable functions defined on (0, ~", P) which
we equip with the topology of convergence in measure (see [KPR 84], chapter II,
section 2). Recall the wellknown fact (see, e.g., [KPR 84], theorem 2.2) that, for
a diffuse measure P, the topological dual of l~) is reduced to ~0} so that
there is no counterpart to the duality theory, which works so nicely in the context
of locally convex spaces (compare [Sch 67], chapter IV).

By we denote the positive orthant of i.e.,

L+(~, ~, ~) = {f E ~, ~), f > 0}. .
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~Ve may consider the dual pair of convex cones (L.°~(S~, P), L.°~(S~, ~, P)) where we
define the scalar product ( f , g) by

(f~9) = E 

Of course, this is not a scalar product in the usual sense of the word as it may assume
the value +00. But the expression ( f , g~ is a welldefined element of and the

application ( f g) -~ ( f g) has - mutatis mutandis - the obvious properties of a
bilinear function.

The situation is similar to the one encountered at the very foundation of measure

theory: to overcome the difficulty that does not make sense for a general element
f E L° (S~. one may either restrict to elements f E or to elements

f E L.°~(~. admitting in the latter case the possibility IE( f ~ = +oo. In the

present note we adopt this second point of view.

1.1 DEFINITION. We call a subset C C L+ solid, if f E C and 0  g  f implies
that g ~ C. The set C is said to be closed in probability or simply closed, if it is

closed with respect to the topology of convergence in probability.

1.2 DEFINITION. For C C L~ we define the polar C° of C by
C° = {g E ~ : 1, for each f E C}

1.3 Bipolar Theorem. For a set C C the polar C° is a closed,
convex, solid subset of L.°~.(5~,.~’, .

The bipolar
C°° _ ~ f E :1E~ f 9J  1, for each g E C° }

is the smallest closed, convex, solid set in containing C.

To prove theorem 1.3 we need a decomposition result for convex subsets of L.°~. we
present in the next section. The proof of theorem 1.3 will be given in section 3.
We finish this introductory section by giving an easy extension of the bipolar

theorem 1.3 to subsets of L° (as opposed to subsets of L.°~.). Recall that, with the
usual definition of solid sets in vector lattices (see [Sch 67], chapter V, section 1), a
set D C L° is defined to be solid in the following way.

1.4 DEFINITION. A set D C L° is solid, if f E D and h E L° with )h) ~
implies h E D.

Note that a set D C L° is solid if and only if the set of its absolut values 
E D} C L+ form a solid subset of L,°+ as defined in 1.1 and D = {h E L° : :

Ihl Hence the second part of theorem 1.3 implies:
1.5 Corollary. Let C C L° and : f E C}. . Then the smallest closed,

convex, solid set in L° containing C equals ~ f E L~ : E 

PROOF. Let D’ be the smallest closed, convex, solid set in L.°~. containing ~C~
and D = {f : I E D’}. One easily verifies that D is the smallest closed, convex
and solid subset of L° containing C. Applying theorem 1.3 to we obtain that

D’ = which implies that D = { f If 6 Q

For more detailed results in the line of corollary 1.5 concerning more general
subsets of L° we refer to [B 97].
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2. A Decomposition Lemma for
Convex Subsets of L~ (S~, .~. IF)

Recall that a subset of a topological vector space X is bounded if it is absorbed

by every zero-neighborhood of Ar ([Sch 67], Chapter I, Section 5). In the case of

IF) this amounts to the following well-known concept.

2.1 DEFINITION. A subset C C is bounded in probability if, for  > 0.

there is :bI > 0 such that

> M]  s, for f E C.

We now introduce a concept which describes a strong form of unboundedness in

2.2 DEFINITION. A subset C C is called hereditarily unbounded in

probability on a set A E .~. if. for every B E .~. B C > 0 we have that

= : f E C } fails to be a bounded subset of 

We now are ready to formulate the decomposition result:

2.3 Lemma. Let C be a convex subset of There exists a partition
of f2 into disjoint sets S~b E .?r such that

(1) The restriction of C to f2b is bounded in probability.
(2) C is hereditarily unbounded in probability on f2u.

The partition the unique partition of 03A9 satisfying (1) and (2) (up to null

sets). Moreover

(3) > 0 we may find a probability measure Qb equivalent to the restric-
tion of P to ~6 such that C is bounded in Qb). In fact, we

may choose Qb such that W- is uniformly bounded.
(4) For E > 0 there is f E C s.t.

(5) Denote by D the smallest closed, convex, solid set containing C. Then D
has the form

D = 

where D|03A9b = { u : u ED} and = { 03BD ~03A9u : v E L0+(03A9, F,)} .

PROOF. Noting that the lemma holds true for C iff it holds true for the solid
hull of C we may assume w.l.g. that C is solid and convex.
We now use a standard exhausting argument to obtain f2u. Denote by B the

family of sets B E ?’, > 0, verifying

for é > 0 there is f E C, s.t. P[B n { f  E-1 }J  é.

Note that B is closed under countable unions: indeed, for is B and é > 0,
find elements in C such that

n { f n   ~ nc.
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Then. by the convexity and solidity of C

N

FN = ~ 
n=l

is in C and, for ;V large enough,

Hence there is a set of maximal measure in a, which we denote by Du and which
is unique up to null-sets. Let Qb = f2Bnu.
(1) and (3): If r[Qb] = 0 assertions (1) and (3) are trivially satisfied; hence we
may assume that P[f2b] > 0. We want to verify (3). Note, since C is a solid subset
of Z!j_, the convex set C’ = C n L1 (~, ,~’, is dense in C with respect to the

convergence in probability Plab; hence, by Fatou’s Lemma, it is enough to find a
probability measure Qb ’"V such that C’ is bounded in To this end
we apply Yan’s theorem ([Y 80], theorem 2) to C’. For convex, solid subsets C’ of

this theorem states, that the following two assertions are equivalent:
(i) for each A with = n A] > 0, there is M > 0 such that

M~A is not in the of C’;
(ii) there exists a probability measure Qb equivalent to Plnb such that C’ is a

bounded subset of L+(S2, ,~’, Qb ). In addition, we may choose Qb such that
W- is uniformly bounded.

Assertion (i) is satisfied because otherwise we could find a subset A E ,~, A C
> 0 belonging to the family ~i, in contradiction to the construction of ~u

above.
Hence assertion (ii) holds true which implies assertion (3) of the lemma. Obvi-

ously (3) implies assertion (1).
(2) and (4): As is an element of B we infer that (4) holds true which in turn
implies (2).
(5): Obviously D C (B L.°~ To show the reverse inclusion let f = v + w with
v E Dlab and w E We have to show that fED. Property (2) implies that,
for every n E N, we find an fn E C such that n2} n St~~  (l~n). Since

hn = (1- (1/n)) v + (1/n) ( f n 11 (n w)) E D and v + w in probability, it follows
that f E D.

According to (2), C is unbounded in probability in F, for each B C Qu
with P[B] > 0; the uniqueness of the decomposition f2 = ~,~ U f2b (up to null sets)
with respect to the assertions (1) and (2) immediately follows from this. D

~ 

3. The Proof of the Bipolar Theorem 1.3

To prove the first assertion of theorem 1.3 fix a set C C and note
that the convexity and solidity of C° are obvious and the closedness of C° follows
from Fatou’s lemma.

To prove the second assertion of the theorem denote by D the intersection of all
closed, convex and solid sets in L.°~. containing C. Clearly D is closed, convex and
solid, which implies the inclusion D C C°°. We have to show that C°° C D.
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Using assertion (5) of lemma 2.3 we may decompose H into H = 03A9b~03A9u such that
D = and (if > 0) we find a probability measure Qb supported
by f2b and equivalent to the restriction of P to Qb such that D is bounded in

(assertion (2)).
Now suppose that there is fo E C°°~D and let us work towards a contradiction.

Let f b = denote the restriction of fo to It is enough to show that f 6 is in
D. Let us denote by Db = fED} the restriction of D to S~6 and by

D6 = Db - 1 = ~h E L1(~,.~, Q6)~ ~ 3 f E Db  f; Qb - a.s.}

the set of elements of dominated by an element of Db. It is straightforward
to verify that Db and Db are L1(Qb)-closed, convex subsets of L+( Qb ) and )
respectively, and that Db is bounded in 

To show that f b is contained in D (equivalently in Db or in Db ) it suffices to show
that f 6 ^ M is in Db, for each M E R+. Indeed, by the Ll(Q)-boundedness and
Ll(Q)-closedness of Db this will imply that f b = f 6 A M is in D.

So we are reduced to assuming that f b is an element of L1 (Qb) which is not an
element of Db. Now we may apply a version of the Hahn-Banach theorem (the
separation theorem [Sch 67], theorem 9.2) to the Banach space L1(Qb) to find an
element g ~ L~(Qb) such that

E[fbg] > 1 while  1, for f E D6.

As Db contains the negative orthant of L1 (Qb) we conclude that g > 0. Con-

sidering g as an element of L0+(03A9, F,) by letting g equal zero on 03A9u we therefore
have that g E C° and the first inequality above implies that C°° and so that
f rt C°°, a contradiction finishing the proof. 0

4. Notes and Comments

4.1 Note: Our motivation for the formulation of the bipolar theorem 1.3 above
comes from Mathematical Finance: in the language of this theory there often comes
up a duality relation between a set of contingent claims and a set of state price densi-
ties, i.e., Radon-Nikodym derivatives of absolutely continuous martingale measures.
In this setting it turns out that often is the natural space to work in

(as opposed to for some p > 0), as it remains unchanged under the
passage from P to an equivalent measure Q (while LP(S~, ~’, l~) does change, for
0  p  oo). We refer, e.g., [DS 94] for a general exposition of the above described
duality relations and to [KS 97] for an applications of the bipolar theorem 1.3.

4.2 Note: Lemma 2.3 may be viewed as a variation of theorem 1 in [Y 80],
which is a result based on previous work of Mokobodzki (as an essential step in
Dellacherie’s proof of the semimartingale characterization theorem due to Bichteler
and Dellacherie; see [Me 79] and [Y 80]). The proof of Yan’s theorem is a blend
of a Hahn-Banach and an exhaustion argument (see, e.g., [S 94] for a presentation
of this proof and [Str 90], [S 94] for applications of Yan’s theorem to Mathematical
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Finance) In fact, these arguments have their roots in the proof of the Halmos-Savage
theorem [HS 49] and the theorems of Nikishin and Maurey [N 70], 74].

4.3 Note: In the course of the proof of lemma 2.3 we have shown that a convex
subset C of Z~.(~. ~*, P) is hereditarily unbounded in probability on a set 4 G ~* in*.
for ;: > 0, there is f E C with

~~..~ n ~ f  ~-1 }~  ~,

which seems a fact worth noting in its own right.
4.4 Note: Notice that by theorem 1.3 the bipolar C°° of a given set C C L.°~,

although originally defined with respect to P, does not change if we replace P by an
equivalent measure Q. This may also be seen directly (without applying theorem 1.3)
in the following way: If P are equivalent probability measures and h = 
is the Radon-Nikodym derivative of Q with respect to P, then the polar CO(Q) of a
given convex set C with respect to Q equals CO(Q) = where C°(P)
is the dual of C with respect to P. On the other hand IE~ ~ f g~ = IE~ ~ f h g~ =

h^1 g~ for all g E L.°~ and therefore the polar of (defined with
respect to Q) coincides with the polar of C°(1~) (defined with respect to P).
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