Dualité du problème des marges et ses applications
Séminaire de probabilités de Strasbourg, Tome 33 (1999), pp. 371-387.
@article{SPS_1999__33__371_0,
     author = {Belili, Nacereddine},
     title = {Dualit\'e du probl\`eme des marges et ses applications},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {371--387},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {33},
     year = {1999},
     zbl = {0949.62011},
     mrnumber = {1768011},
     language = {fr},
     url = {http://archive.numdam.org/item/SPS_1999__33__371_0/}
}
TY  - JOUR
AU  - Belili, Nacereddine
TI  - Dualité du problème des marges et ses applications
JO  - Séminaire de probabilités de Strasbourg
PY  - 1999
DA  - 1999///
SP  - 371
EP  - 387
VL  - 33
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1999__33__371_0/
UR  - https://zbmath.org/?q=an%3A0949.62011
UR  - https://www.ams.org/mathscinet-getitem?mr=1768011
LA  - fr
ID  - SPS_1999__33__371_0
ER  - 
Belili, Nacereddine. Dualité du problème des marges et ses applications. Séminaire de probabilités de Strasbourg, Tome 33 (1999), pp. 371-387. http://archive.numdam.org/item/SPS_1999__33__371_0/

[1] Abdellaoui, T. Détermination d'un couple optimal du problème de Monge Kantorovich. C. R. Acad. Sci.Paris, 319:981-984, 1994. | MR 1302803 | Zbl 0809.60003

[2] Abdellaoui, T., ET Heinich, H. Sur la distance de deux lois dans le cas vectoriel. C. R. Acad. Sci.Paris, 319:397-400, 1994. | MR 1289319 | Zbl 0808.60008

[3] Aldous, D.J. Shift-coupling. Stoch. Proc. Appl, 44:1-14, 1993. | MR 1198659 | Zbl 0769.60062

[4] Cattiaux, P., ET F. Gamboa. Large deviations and variational theorem for marginal problems. Preprint, 1996. | MR 1673564

[5] Choquet, G. Forme abstraite du théorème de capacitabilité. Ann. Inst. Fourier, 9:83-89, 1959. | EuDML 73758 | Numdam | MR 112844 | Zbl 0093.29701

[6] Cuesta-Albertos, J.A., AND Matrán, C. Notes on the Wasserstein metric in Hilbert spaces. Ann. Probab., 17:1264-1276, 1989. | MR 1009457 | Zbl 0688.60011

[7] Cuesta-Albertos, J.A., Matrán, C., AND Tuero-Diaz, A. . On lower bounds for the l2-Wasserstein metric in a Hilbert space. J. of Theoretical Prob., 9:263-283, 1996. | MR 1385397 | Zbl 0870.60005

[8] Dall'Aglio. Fréchet classes and compatibility of distribution function. Sym. Math., 9:131-150, 1972. | MR 339311 | Zbl 0243.60007

[9] Dellacherie, C., Meyer, P.A. Probabilités et potentiel. Herman, Paris, 1983. | MR 727641

[10] Dieudonné, J. Sur le théorème de Hahn-Banach. Rev. Sci, 79:642-643, 1941. | JFM 67.0404.03 | MR 13223 | Zbl 0063.01104

[11] Doeblin, W. Exposé de la théorie des chaînes simples constantes de Markov à un nombre fini d'états. Rev. Math. Union Interbalkanique, 2:77-105, 1938. | JFM 64.0538.01 | Zbl 0021.42201

[12] Dowson, D.C., Landau, B.V. The Fréchet distance between multivariate normal distribution. J. Multivariate Anal., 12:450-455, 1982. | MR 666017 | Zbl 0501.62038

[13] Dudley, R.M. Distances of probability measures and random variables. Ann. Math. Stat., 39:1563-1572, 1968. | MR 230338 | Zbl 0169.20602

[14] Dudley, R.M. Probability and metrics. Aarhus Univ., Aarhus, 1976.

[15] Dudley, R.M. Real analysis and probability. Chapman and Hall, New York London, 1989. | Zbl 0686.60001

[16] Dunford, N., AND Schwartz, J.T. Linear Operators. Interscience Publishers, a division of John Wiley and Sons, New York, t. I, 1958. | MR 1009162 | Zbl 0084.10402

[17] Edwards, D.A. On the existence of probability measures with given marginals. Ann. Inst. Fourier., 28:53-78, 1978. | Numdam | MR 513882 | Zbl 0377.60004

[18] Fernique, X. Sur le théorème de Kantorovitch-Rubinstein dans les espaces polonais. Lecture Notes in Mathematics 850., Springer, 1981. | Numdam | MR 622552 | Zbl 0461.60016

[19] Fréchet, M. Sur les tableaux de corrélation dont les marges sont données. Annales de l'université de Lyon, Sciences., 4:13-84, 1951. | Zbl 0045.22905

[20] Fréchet, M. Sur la distance de deux lois de probabilité. C. R. Acad. Sci.Paris., 244,1957. | MR 83210 | Zbl 0077.33007

[21] Gangbo, W., AND Mccann, R.J. The geometry of optimal transportation. Acta. Math., 177:113-161, 1996. | MR 1440931 | Zbl 0887.49017

[22] Gelbrich, M.. On a formula for the l2-Wasserstein metric between measures on Euclidean and Hilbert spaces. Math. Nachr., 147:185-203, 1990. | MR 1127323 | Zbl 0711.60003

[23] Givens, C.R., AND Shortt, R.M. A class of Wasserstein metrics for probability distributions. Michigan Math. J., 31:231-240, 1984. | MR 752258 | Zbl 0582.60002

[24] Goldstein, S. Maximal coupling. Z. Wahrscheinlichkeitstheor. Verw. Geb., 46:193-204, 1979. | MR 516740 | Zbl 0398.60097

[25] Griffeath, D. A maximal coupling for Markov chains. Z. Wahrscheinlichkeitstheor. Verw. Geb., 31:95-106, 1975. | MR 370771 | Zbl 0301.60043

[26] Griffeath, D. Uniform coupling of non-homogenous Markov chains. J. Appl. Probability, 12:753-762, 1975. | MR 386018 | Zbl 0322.60061

[27] Hammersley, I.M., AND Handscomb, D.C. Monte Carlo methods. Meth, London,1964. | Zbl 0121.35503

[28] Hansel, G., AND Troallic, J.P. Mesures marginales et théorème de Ford-Fulkerson. Z. Wahrscheinlichkeitstheor. Verw. Geb., 43:245-251, 1978. | MR 501785 | Zbl 0369.60010

[29] Hermes, H., AND Lasalle, J.P. Functional Analysis and Time optimal control. Academic Press, New York and London, 1969. | MR 420366 | Zbl 0203.47504

[30] Kamae, T., Krengel, U. AND O'Brien. Stochastic inequalities on partially ordered spaces. Ann. Probab., 5:899-912, 1977. | MR 494447 | Zbl 0371.60013

[31] Kantorovich, L.V. On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.), 37:199-201, 1942. | MR 9619 | Zbl 0061.09705

[32] Kantorovich, L.V. On a problem of Monge (in russian). Uspekhi Math. Nauk, 3:225-226, 1948.

[33] Kellerer, H.G. Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheor. Verw. Geb., 67:399-432,1984. | MR 761565 | Zbl 0535.60002

[34] Kelley, J.L., AND Namioka, I. Linear topological spaces. D. Van Nostrand Company, Princeton, N. I, 1963. | MR 166578 | Zbl 0115.09902

[35] Knott, M., AND Smith, C.S. On the optimal mapping of distributions. J. Optim. Th. Appl., 43:39-49, 1984. | MR 745785 | Zbl 0519.60010

[36] Lindvall, T. Lectures on the coupling method. Wiley, New York, 1993. | MR 1180522 | Zbl 0850.60019

[37] Major, P. On the invariance principle for sums of independent identically distributed random variables. J. Multivariate Anal., 8:487-517, 1978. | MR 520959 | Zbl 0408.60028

[38] Marshall, A.W., Olkin, I. Inequalities theory of majorization and its applications. Academic Press, New York, 1979. | MR 552278 | Zbl 0437.26007

[39] Monge, G. Mémoire sur la théorie des déblais et des remblais. Histoires de l'Académie Royale des Sciences de Paris, avec les mémoires de Mathématiques et de Physique pour la même année, pages 257-263, 1781.

[40] Olkin, I., AND Pukelsheim, F. The distance between two random vectors with given dispertion matrices. Linear Algebra Appl., 48:257-263, 1982. | MR 683223 | Zbl 0527.60015

[41] Pitman, J.W. On coupling of Markov chains. Z. Wahrscheinlichkeitstheor. Verw. Geb., 35:315-322, 1976. | MR 415775 | Zbl 0356.60003

[42] Rachev, S.T. The Monge Kantorovich mass transference problem and its stochastic applications. Theory Prob. Appl., 29:647-676, 1984. | MR 773434 | Zbl 0581.60010

[43] Rachev, S.T. On a problem of Dudley. Soviet. Math. Dokl., 29:162-164, 1984. | MR 740298 | Zbl 0587.60014

[44] Rachev, S.T. Probability metrics and the stability of the stochastic models. Wiley, New York, 1991. | MR 1105086 | Zbl 0744.60004

[45] Rachev, S.T., Rüschendorf, L., AND Schief, A. Uniformities for the convergence in law and in probability. J. of Theoretical Prob., 5:33-44, 1992. | MR 1144726 | Zbl 0756.60003

[46] Ramachandran, D., AND Rüschendorf, L. A general duality theorem for marginal problems. Probab. Theory Relat. Fields, 101:311-319, 1995. | MR 1324088 | Zbl 0818.60001

[47] Ramachandran, D., AND Rüschendorf, L. Duality and perfect probability spaces. Proceedings of the American mathematical society, 124:2223-2228, 1996. | MR 1342043 | Zbl 0863.60005

[48] Rockafellar, R.T. Convex Analysis. Princeton, Univ. Press, 1970. | MR 274683 | Zbl 0193.18401

[49] Rüschendorf, L. Fréchet bounds and their applications. In Kotz S Dall'Aglio, G. and Salinetti G, editors, Advances in probability distributions with given marginals: Beyond the Copulas, pages 141-176. Dordrecht, Kluwer Academic Publishers, 1991. | MR 1215951 | Zbl 0744.60005

[50] Rüschendorf, L., AND Rachev, S. A characterization of random variables with minimum l2-distance. J. of Multivariate Anal., 32:48-54, 1990. | MR 1035606 | Zbl 0688.62034

[51] Skala, H.G. The existence of probability measures with given marginals. Ann. Probab., 21:136-142, 1993. | MR 1207218 | Zbl 0768.60004

[52] Snijders, T.A.B. Antithetic variates for Monte-Carlo estimation of probabilities. Statistics Neerlandica, 38:1-19, 1984. | MR 751938 | Zbl 0552.65097

[53] Strassen, V. The existence of measures with given marginals. Ann. Math. Stat, 36:423-439, 1965. | MR 177430 | Zbl 0135.18701

[54] Szugla, A. On minimal metrics in the space of random variables. Theory Prob. Appl., 27:424-430, 1982. | MR 657942 | Zbl 0493.60016

[55] Thorisson, H. On maximal and distributional coupling. Ann. Probab., 14:873-876, 1986. | MR 841589 | Zbl 0604.60034

[56] Vallender, S.S. Calculation of the Wasserstein distance between probability distributions on the line. Theory. Prob. Appl., 18:784-786, 1973. | Zbl 0351.60009