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p-variation for families of local times on lines

Haya Kaspi,* and Jay Rosen~

1 Introduction

The local time process (Lt )xES for a Markov process with values in S measures, in
a certain sense, the amount of time that the Markov process spends at each point
up till time t. is a family of continuous additive functionals which has been
the subject of intensive investigation. Not all Markov processes have local times. In
particular, Levy processes can only have local times in one dimension since in higher
dimensions they do not hit points. Nevertheless, one can study other families of con-
tinuous additive functionals and try to see which properties of the local time process
(Lt )xES admit natural generalizations. The family of ’local times on lines’ for the
two-dimensional symmetric stable process Xt, which ’measures’ the amount of time
that X spends on each line up till time t, is in some ways the most natural extension
of the family of local times at points. In this paper, the property of which
we plan to generalize is that of quadratic variation, or more generally p-variation, in
the spatial variable. Aside from its intrinsic interest, we hope that this detailed study
will pave the way for generalizations, both of other properties and to other families
of continuous additive functionals.

The quadratic variation of the local time Lt of 1-dimensional Brownian motion Ws
was studied in Bouleau and Yor [2] and Perkins [6]. They show that for any sequence
of partitions 7rn of [a, b] with mesh size converging to zero,

(1.1) lim (Lxit - (Lxi-1t)2 = 4 t01[a,b](Ws) ds,

with convergence in probability. Similar results were obtained in [7] and [5] for the
p-variation of the local times of 1-dimensional symmetric stable processes. The object
of this paper is to generalize such results to the ’local times on lines’ of 2-dimensional
Brownian motion and symmetric stable processes. To better appreciate the results
we shall obtain, we first reformulate (1.1). Let c : [0, 1] H Rl be a smooth curve, not
necessarily monotone, and let N(c ~ y) = card{~ E [0, 1] c(x) = y}, the cardinality of
the pre-image c-1(y). Using (1.1) on each interval of the complement of ~s ~ c’(s) = 0~
we see that for any sequence of partitions ~rn of [0,1] with mesh size converging to
zero,

(1.2) lim ~ Lt~~i~ - = 4 t N(c ( WS) ds,0

with convergence in probability.
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For any 0  let e(0) = (cos(o), sin(B)) denote the unit vector with angle
e, and (sin(8), - cos(o)) denote the unit vector perpendicular to e(9). We
use = {ae(8) + ( x E Rl} to denote the line such that ae(8) is the foot of
the perpendicular from the origin to If Xt denotes the symmetric stable process
of index ,~ in the plane, then X 8 = Xt . e(9), the component of Xt in the direction
of e(0), is a real symmetric stable process of index ,Q (just check the characteristic
function). Let denote the local time of xf at a E R+.

Let ’s = (as, Bs) be a simple smooth curve, ~y : [0,1] ’-~ R+ x [0, 2~r). For ease of
notation we will sometimes write for ~g.

Let ~,~ : [0,1] x R1 -~ R2 be defined by x) = + xe(Bs )) and let
N(~,~ ~ y) = E [0,1] x Rl ~ ~y(s, x) = ?/}, the cardinality of the pre-image
~~,1 (y). Thus y) is the number (possibly infinite) of parameter values s such
that y E .

Let Q(0,1) denote the set of all partitions 7r = {0 = so  sl ~ ~ ~ = 1} of
[0,1], and let = (si - si-1) denote the length of the largest interval in ~r.
( ~ ~r ~ is called the mesh size of 7r). .

Theorem 1 If Xt is a planar Brownian motion, and denotes the local time of
Xt . e(9), then

(1.3) - Lt 7(s~-1) ) 2 = 4 N(~,~ ~ Xg) ds.0

in L2, uniformly both in t E ~O,T~ and Q(o,1) as -~ 0.

Note that for the special case of = (c(s), 03B80) with 9o fixed, this reduces to
(1.2) for the real Brownian motion Xt . e(o). When = (0, s), our theorem can
be obtained from (1.1) using the skew-product representation for planar Brownian
motion. However, already for the simple example = (1, s) our (1.3) is truly a
two-dimensional result, and the formal similarity between Theorem 1 and (1.2) is thus
rather striking.

Theorem 1 can essentially be proven using stochastic calculus and Tanaka’s for-
mula, and we will outline such a proof in section 4. However, we prefer to derive
Theorem 1 as a special case of the Theorem 2 below for symmetric stable processes.
We now introduce the notation needed for that Theorem. In what follows, Xt will
denote the symmetric stable process in the plane of index ,Q.

For 0  9  27r, a E R~_ let denote one-dimensional Lebesgue measure on la,8.
~ 

Equivalently, if ha,e : RZ is defined by = ae(8) + then is the

measure induced by ha,8 from Lebesgue measure al on the line: = 

Thus

We can easily check that is the Revuz measure of the CAF defined above.

Let denote the CAF with Revuz measure defined by

= f (ase(es) + + dx.
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We note that

(14) / f(v) d#a,0,S(v) ~ / f(v) + Y ° dma,0(Y)

so that

In Lemma I below we show that s e is continuous in and therefore

J) ds is well defined in L2.
Let e(fl) = (2k)!!(4c(03B2))k where

c(03B2) = -
cos(03C0(03B2 - 1)/2) 0393(2 - 03B2)- 

~~ p _ ~~

for I  fl  2, and c(2) = 1.

Theorem 2 If Xt is a symmetric stable process in the plane of index fl = I + I /k
with k = 1 , 2, ..., and denotes the local time of Xt . e(0) then

(1.6) lim £ (L§J~~’~ - L§J~~’-’~)~~ = e(fl) /~ ds
°

in L2, uniformly both in t G [0, T] and Q(0, 1) as ]Jr(n) ] - 0.

Remark I. For the special case of qs = (s, 0), with 0 fixed, so that =

L§"°, this reduces to Theorem I of [7] for the p-variation of the local time of the
1-dimensional symmetric stable process X/.

For the case of planar Brownian motion, Theorem 2 says that

(1 .7) lim £ (L§J~~’~ - L§J~~’~’~)~ = 4 /~ ds.
°

In [I] it is shown that for planar Brownian motion we can choose an a.s. continuous
version of (Lf ; (0, t) G [0, 2Jr) x Rk ) , so that by (1 .5) we can choose an a.s. continuous
version of ; (s, t) G [0, 1] x Rj ). We note that J) ds is the CAF with Revuz
measure v = J) ds. It is easily checked that | is |J(03A603B3)(s, x)|, the absolute
value of the Jacobean of the map 03A603B3. We have that

(1 .8) / f(v) dv(v)
# / o i / f(y) djia,g,s (y) dS

= / ] y) dy

where the last step uses the Area Formula, see 3.2.3 of [3] . This shows that dv(y) =
N(03A603B3 | y) dy, which proves Theorem 1.
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2 

Lemma 1 If ,Q =1 + with k =1, 2, ..., then for any s, t, we have E L2k and
s H is continuous in 

Proof of Lemma 1: We have

(2.1) E ({A03B3,st}2k)

= (2k)! ... pti(xi-1,xi)dti da,03B8,s(xi)

~ C u1(xi-1,xi)da,03B8,s(xi)

i=1

We claim that the one dimensional integral

(2.2) R1u1(ae(03B8) + ze(03B8))) (1 + |z|2) dz  ~,

which would show that (2.1) is finite, establishing the first part of our Lemma. To
show (2.2) we first recall that each component of Xl = Xi2~) is a real-valued
symmentic stable process of index ,Q, and therefore has moments of order for any
,Q’  ,~, [4], p.578. Consequently,

(2.3) co def  +  oo.

Since, by scaling, Xt = in law, we have = Therefore

(2.4) R2 dx = 0 ~ dt  oo.

ul (x) is spherically symmetric, and, by abuse of notation, we use ul (r) for the function
on R+ whose value is for any e. Using polar coordinates, we can now rewrite
(2.4) as

(2.5) ~0|r|1+03B2’u1(r) dr  ~
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which implies (2.2). In fact, (2.5) together with the monotonicity of u1(r) implies
that for any 6 > 0

(2.6) sup / u1 (ae(0) + (1 + |z|2+1/k-03B4) dz  oo.

The fact that s e is continuous in now follows from these considerations,

using the bound (3.9) below with, > 0 small.

3 A Second Moment Proof

Proof of Theorem 2: We write, for T C Q(0, 1)

E ( ,( fl) 10 ( A’t>r)k £ ( L’t(ri) 
_ L’t(Ti-1)) 

2k }2)
= 10 10 E drdr’

- 2e(fl) /~ £ E ( - L§J~~’~~ ~) 
~*~ 

(A§J>~’) *~ ) dr’a ,

+ £ E ( (L§J~~’~ - - 

,,j

(3.1) + A - 2B~ + Of’ where e + IT I

We will show that as e - 0, each of A, B~, Of converge to

(3.2) [(2k)!(2c(03B2))k]2 £ £ dT £ dT’

...03A0 
pti (x(i-1)c(i-1), x(i)c(i) i. )=1 !Ja,(},r Xj !Ja,(},r’ Xj

where the sum runs over all paths * : (1, ... , 2k) - (1 , 2) which visit 1 , 2 an equal
number of times (I.e. k times each), and c*(I) = [( j  I [ it(j) = it(I)) [.

The fact that A equals (3.2) is straightforward, so we turn to B~. We will write
for We have

c(03B2)E { (L03B3t(rl) - Lr(rl-1)t)2k (A03B3,03B4t)k}

= ((2k)!)2(2c(03B2))k 03A3 ...  03A0 pti(x03C0(i-1)c03C0(i-1), z§/(I> )dti z§/(I» )

where the sum runs over all paths Jr : (1, ... , 3k) - (1, 2) which visit 2 exactly k
times, and

M§,o * Ma,o,ri 
~ 

ma,o,ri-1

(3.3) * #a,o,r’
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Fix such a 03C0. We intend to rewrite

(3.4) / ... 03A0pti(x03C0(i-1)c03C0(i-1) x03C0(i)c03C0(i) dti d 03C0(i)a,03B8 (x03C0(i)c03C0(i) )
a=1

as a sum of many terms, most of which will make 0 contribution to (3.1) in the E ~ 0
limit. Eventually we will identify those terms that contribute to (3.1) in the E - 0
limit, and show how they lead to (3.2). Our procedure involves three steps.

Step 1: Let § : : ~ be defined by

+xe(8 ~)) = 

With this notation we rewrite

(3.5) z) ( - l~)~
- z) - z)~ 

- y) z) 

+ z) - z)} 

- z) 

+ z) 

where

y) = y) - 4’ly))~ >

z) = z) - z).
We proceed to rewrite the factors in (3.4), working with each factor in turn, in

order of decreasing i. For the largest i with = 1 we use (3.5) to replace

(3.6) pti (x03C0(i-1)c03C0(i-1), x1c03C0(i)) pti+1 (x1c03C0(i), x03C0(i+1)c03C0(i+1)) d 1a,03B8(x1c03C0(i))
by a sum of two terms, which we then view as replacing (3.4) by two terms. In case
the largest such i is 3k, we simply rewrite

(3.7) pt3k (x03C0(3k-1)c03C0(3k-1), x1c03C0 (3k) ) (3k) )
= pt3k (x03C0(3k-1)c03C0(3k-1), x1c03C0(3k)) ( (x1c03C0(3k)) - (x1c03C0(3k)))
- ~2pt3~ (xc (( k li) ~ (3k) )’

We then proceed through decreasing i. At each stage that we find an i with = 1,
we check to see if the previously handled factor, i.e. the factor involving (x~~(i), 
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is a p or a Ap. If it is a p, then we proceed as before using (3.5). If it is a Ap, we do
not use (3.5), but rather simply write out d~ca,8 (x~~ (~) ) . In other words we use

(3.8) ~ (i) ~ x~~ (i)
= 

) 

- pt=(xc,~(i_1)~~(xc,~(i)))ptt+1(~(xc,~(1))~xc,r(a+1))d~a~9~r~(xc,~(i))
to generate two terms.

After we have proceeded in this manner for all i, we will have replaced (3.4) by
many terms. Each term will have at least k factors of the form Ap. We claim that

any term with more that k factors of the form Ap will be hence such terms

will make 0 contribution to (3.1) in the E -~ 0 limit. To see this, let ua(x) denote a

generic symmetric, positive, monotone decreasing (in function on R2 such that

ua(x)  Cul(x/2) for ~x~ > 1 and ua(x)  for (x~  1. We then have that

fo pt(x) dt  cul-1/k(x) while for any 0 ~ 03B3 ~ 1

(3.9) pt x + a) - _ + a) + ( ) ol ( + ) - Pt(X) I dt ~ clal’Y(Ul-l/k+’Y(X + a) + Ul-l/k+’Y(X)).
(Consider seperately |x|  4|a| and |x| > We then use these estimates to

bound the integrals in the term we are studying, once again proceeding in order of

decreasing i. (Note: our integration is always over lines.) If our term has j > k
factors of the form Ap, we choose ~y  1/k, so that will be integrable on

any line, but with 1  1 + 1/k. Using the fact that |y - 03C6(y)  c(1 + for

y = + we see that our term can be bounded by which

establishes our claim. (The condition j~y  1 + 1/k guarantees that the factors of ~x~
do not mount up sufficiently to destroy integrability; see the proof of Lemma 1).

We will say that a path 7r is even if its visits to 1 occur in even runs. A path will
be called odd if it is not even. It is easily seen that when our proceedure is applied to

any odd 7r, all the resulting terms will have > k factors of the form Ap, hence such
terms will make 0 contribution to (3.1) in the e -~ 0 limit. Similarly, if 7r is even,

the only resulting terms with k factors of the form Ap, will be those terms in which
for each i such that is an even-numbered visit to 1, we replace the factor pt~ by
a A2pt,, while for each i such that is an odd-numbered visit to 1, we retain the

factor pt, more precisely we use (3.8). We note that for such terms, the k factors of
the form are seperated from each other by p factors

Step 2: Let 7r be a fixed even path, and consider one of the terms generated in

Step 1 which does make a contribution to (3.1) in the e -~ 0 limit. As described above,
such a term has precisely k factors of the form A2p and these k factors are seperated
from each other by p factors. Let us rewrite every pair of the form y)pt(y, z)
using

(3.10) z)
= z) + y) z) - z)) ~

Once more this allows us to rewrite our term as a sum of many terms. We now show

that any term which contains a pair of the form (pt(y, z) - will be
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o(Orl), hence such terms will make 0 contribution to (3.1) in the E --~ 0 limit. To see
this we proceed as above to bound our term by bounding the integrals, proceeding in
order of decreasing i. We use (3.9) to bound the contribution of the z, t integrals of
(pt(y, z) - pt(x, z)~ by c~x - with, = 3/(4k). We then use the bound

(3.11) |y|03B3(T0 |ps(y + a) - ps(y)I dly

=  o + a) - ~ ds ~ly
+

|y| >2| a||y|03B3 (T0 |ps(y + a) - ps(y)| ds) d1y

~ c|a|03B3 |y|~2|a| (u1-1/k(y + a) +u1-1/k(y)) d1y

+c|a|03B3’ |y|>2|a| |y|03B3u1-1/k+03B3’(y) d1y

~ c|a|03B3+1/k +c|a|03B3’ |y|>2|a| u1-1/k+03B3’-03B3(y) d1y

 + 

by taking ~y’ = 3/(2k). It is easily seen that this verifies our claim.
Step 3: We are now reduced to considering terms with precisely k factors of the

form 02ps (x, with no other factors containing the variable yz. We now integrate
each such factor with respect to 

Note that

(3.12) ps (y, z) 
= - are(8r) - xe(9r )) dx
= qs (ar _’ y . )

where qs(x) denotes the density of the one dimensional symmetric stable process of
index ,Q. Setting

(3.13) qs{arl - y - -’ y 

we see from (3.12) that

(3.14) (xv 1 ) _ 

In this manner we can see that the sum of all terms generated by (3.4) which
contribute to (3.1) in the E - 0 limit can be written as

3.15 £ ... ° / 03A0 pti (x(i)c(i),A,x(i-1)c(i-1),A)dti
’ ~"~

k

~ ~T~ (x~~A) 
j=1
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where Jt : (1, ... , 2k) - (1, 2) is the path visiting both 1 and 2 exactly k times
induced by Jr as follows: since visits of Jr to 1 occur in pairs, we simply suppress one

visit from each pair, and x2j,A = z) while = §(z)) if j C A and x1j,A = z) if

j / A. The methods of Step 1 show that we can replace this, up to terms which will
contribute 0 to (3.1) in the e - 0 limit by

(3.16) L...J 
- 

.... pti( xCir(i)’ XC7r{i-l) ti

k

fl QT; (Z), A) dpa,0,ri (Z) ) dXa,0,r’ (Z§) .
j=i

Note that

(3. 17) + 
.

= - - 
- ze(0)) 

= qs (0) - arl CoS(Orl - - z sin(03B8rl - 03B8rl-1)}

while

(3. 18) + 

= - 
- 

- qs (0)
= 

- z - qs (0)
= qs{arl-1 cos(03B8rl - 03B8rl-1) = arl - x sin(03B8rl - 03B8rl-1)} - qs{0}
= + + + 

where

(3. 19) + 

= qs {arl-1 cos(03B8rl - 03B8rl-1) - arl - x sin(03B8rl - 03B8rl-1)}
-qs{arl-1 - arl cos(03B8rl - 03B8rl-1) - x sin(03B8rl - 03B8rl-1)}.

We record here Lemma 1 of [7] .

Lemma 2

(3.20) £ t 1 qt(z) - qt (y) I dt  c c|x - y|03B2-1

and 
T [z[2

(3.21) / ° qt(0) - qt(x)dt = + O (|x|2 T3/03B2-1 )
where

(3.22) c(fl) = / o (qt(0) - qt(1))dt  ao.

Actually, we need a slight refinement of (3.21). The error term O /T3/03B2-1)
comes from a bound On - qt(lli))dt. We Can also bound this Integral by
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= C/T2/03B2-1. Interpolating these two bounds shows that for 03B4 > 0 sum-
ciently small we have

(3.23) T0 qt(0) - qt(x)dt = c(03B2)|x|03B2-1 + 0 (|x|03B2-1+03B4 T(3+03B4)/203B2-1/2)
Using this we see that

~) ~ ,~(...~,. ~,,.. =. ("~~~-). °
Thus, up to terms which wilt not contribute to (3.1) in the e -~ 0 limit we can

replace ~(.r~) by (-1)~~(~) in (3.16). Thus (3.16) can be replaced by

M E /-/ - ~"~..E~.~.~ ’~
>

~=1

=2" /-/ 
’E?~.+E~~~ 

"’

~=1

Furthermore, (3.23) tells us that

(3.26) ~ + ~e(~)) ~

= ~ y~ 9T{0} - o., ~,_J - ~,_J} , dr
= c(~)~,_~ - a., ~_J - ~,_J!~-’

.~(l+~f-~)!A~-~~ y(3+~)/2~-l/2 )
=~K.~r(A.).-.~(~~’;;~r’)

Using Lemma 3 of [7] now completes the proof that ~ converges to (3.2).
Finally, the fact that Cc converges to (3.2) follows using the methods employed

above for ~ together with the methods of [7]. This completes the proof of Theorem
1.

4 A Stochastic Calculus Proof

In this section we outline a proof of Theorem 1 using stochastic calculus. In fact, we
only deal with convergence in probability, and for a fixed sequence of partitions
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with [Jr(n) ) - 0. To emphasize that we are dealing with planar Brownian motion we
use the notation Bs = (B1s , B2s) in place of Xs, and write B03B8s = Bs . e(0), etc. By
Tanaka’s formula

(~ ° i) § 1 ~ - ( 80(S) ~ ~( ~))~ ( 80(S) _ ° ~( ~))~ _ ~ % i °

As we will explain below, the only term which will contribute to the quadratic variation
in the limit is the stochastic integeral term. Let

~’~~~ ~ l~ ~(Bi~~~>a(s))~~~~~~
and consider

Vn = 03A3 (03B3(si+1)i - 03B3(si)t)2.

By Ito’s formula

( g’YSi+i> _ 
- 2 t0 ( g’t(Si+I) g’t(Si)) [1 {B03B8(si+1)u>a(si+1)} dB0(Si) - dB03B8(si)u]

+ t0 du (1{B03B8(si+1)u>a(si+1)} + 1{B03B8(si)u>a(si)})
-2 t0 du .1{B03B8(si+1)u>a

(si+1)}1{B03B8(si)u >a(si)} [cos03B8(si+1)cos03B8(si) 
+ sin 03B8(si+1) sin 03B8(si)] .

(4.2)
As we explain below, the only contribution to limn~~ Vn will come from the last

two lines in (4.2) which we can rewrite as

t0 (1{B03B8(si+1)u>a(si+1)} + 1{B03B8(si)u>(si)}
-2 cos(03B8(si+1 ) - 03B8(si) ) 1{B03B8(si+1)u )>a(si+1),B03B8(si)u >a(si)} )du

~ % ~~lBl~~’~~~>~(Si+I» Bi~~’~~(Si)1 ~ ~lBi~~’~>~(Si» ~~

+ O(s.+i - .

Writing

Csi,si+1 = {x ~ R2|x ° > x °  

U (z C R~ [ z . e(0(sj+i))  a(si+i), z . e(0(si)) > a(si) )
we then see that

(4.3) lim Vn = lim / 
t 

£ 1c (B~) du.

is, in general, the cone contained between the lines l03B3(si) and (If the
lines are parallel, Csi,si+1 is the strip between them). Csi,si+1 is not quite the same
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as = but a detailed trigonometric calculation shows that in the
oo limit we can replace by in (4.4) to obtain

(4.4) lim Vn = lim t0 03A3 1si,si+1 (Bu) du

(It is mainly at this point that our proof is only an outline. We leave the trigonometric
details to the dedicated reader). Now, if _ ~  oo, it is easily seen that

and since the arguments of section 2 and the end of section 1 show that  o0

for a.e. u a.s., we see that

lim Vn = / 0
Noting the factor 1~2 in (4.1) will complete our proof, once we explain why the terms
we have ignored do not contribute in the oo limit.

To show that the stochastic integral term in (4.2) converges to 0 we write it as

4.5 O t ( B7(~~+1) - u B7(s~) u ) 1 - 1 

= t ( B7(s~+1) u - ) 1 =+1 ) >a ( s~ =+1)e B u B ~ s~ =)>a ( s~ =)I 1(dBe(sa+1) B u - )
+ - 03B3(si)u) 1 =+1 ) >a(si+1), B03B8(si)ua(si)}dB03B8(si+1)u.

(B~(si) _ B~(s~+1)) 1 { ~~ ( s~ _)~ ’~~ .

Summing over i in the first term, we get

/~ £ ~ 7(si+1) - ~’Y(s~) 1 ~~~_ ~ ~ ~ 
O (Bu Bu ~ 

(cos 6(sa+1) - cos03B8(si))dB1u + (sin 8(si+1) - sin03B8(si))dB2u .

But, since s -~ is continuous, it follows that ,

I ~ (B~’(Sz+1) - B~’(s~)) 1 >a(s;+i ), B~~~’ ~ >a(s; u u a+1 i

 ~ IBu(s~+~) _ B(Si+1) - COS(8(si)) I

 sup IB~(s~+1) _ ~ COS(8(Si))I
i

which is bounded by

sup (B~(SE+1) - I Variation of cos 8(s)
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which converges to 0 as -~ 0. The same is true with (sin 8(s$+1) - 
replacing the cosine. Thus, by the dominated convergence theorem for stochastic in-
tegrals (we may assume that .B~, B2 are bounded by localization) the above expression
converges to 0.

As to the remaining expression in (4.5), summing over i and writing and

F~~ explicitly we obtain

~ E(~-~-~’~~..~~,~.~,,( u u ) {gu + ~a(ss+1)~ 

+ 

+f ~ 1 {Bu~$t>>a(s~)~ o 
’~ ’~ (Bu ~’ >a(s;), Bu ’+~ a(s;+i))

(cos + sin 

which by the dominated convergence theorem for stochastic integrals (by localization
if necessary to bound B~(gt), B~(S~+1)) converges, as --~ 0, to

t 
~ Bu) 

(Buk(’~) - B~~(u)1 (cos + sin 
p 

where is the k-th of the N(~(~y) ~ Bu) lines on which B~, lies and 8(~y~(u)) is its
angle. If = for some s, then is the limit of a sequence {t~~
that converges to s. But since t - is continuous, B,~k(’~) = Buk(") and the whole
expression is equal to 0.

We now return to (4.1) to show that the only term which will contribute to the
quadratic variation in the limit is the stochastic integeral term. If

~t(s) = Bt (s) - a(s) + - Bo(s) - a(s) +
= (Bt cos 9(s) + a(s))+ - (BQ cos 9(s) + a(s))+,

we note that s -~ is Liptschitz 1 (by the smoothness of s -~ ~y(s)) and therefore

~ 

Furthermore, since s -~ is continuous,

(~t(si+i) - ~t(s~)) (Bt (~i+~) _ Bt (S~)) - p .

This completes our outline.
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