@article{SPS_2000__34__239_0, author = {Harris, Simon C.}, title = {Convergence of a {{\textquotedblleft}Gibbs-Boltzmann{\textquotedblright}} random measure for a typed branching diffusion}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {239--256}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {34}, year = {2000}, mrnumber = {1768067}, zbl = {0985.60053}, language = {en}, url = {http://archive.numdam.org/item/SPS_2000__34__239_0/} }
TY - JOUR AU - Harris, Simon C. TI - Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion JO - Séminaire de probabilités de Strasbourg PY - 2000 SP - 239 EP - 256 VL - 34 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_2000__34__239_0/ LA - en ID - SPS_2000__34__239_0 ER -
%0 Journal Article %A Harris, Simon C. %T Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion %J Séminaire de probabilités de Strasbourg %D 2000 %P 239-256 %V 34 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_2000__34__239_0/ %G en %F SPS_2000__34__239_0
Harris, Simon C. Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion. Séminaire de probabilités de Strasbourg, Tome 34 (2000), pp. 239-256. http://archive.numdam.org/item/SPS_2000__34__239_0/
[1] Uniform convergence in the branching random walk, Ann. Probab., 20, 137-151 | MR | Zbl
(1992)[2] Probability. Addison-Wesley, London. | MR | Zbl
(1968)[3] Analysis, algebra and probability for a coupled system of reaction-diffusion equations, Phil. Trans. Roy. Soc. London (A), 350, 69-112. | Zbl
, , , & (1995)[4] Boltzmann-Gibbs weights in the branching random walk. Classical and Modern Branching Processes (ed. Athreya, Krishna, et al.), IMA Vol. Math. Appl., 84, pp 41-50. Springer, New York. | Zbl
& (1997)[5] Large-deviations and martingales for a typed branching diffusion: II, (In preparation).
& (2000)[6] Large-deviations and martingales for a typed branching diffusion : I, Astérisque, 236, 133-154. | Numdam | Zbl
& (1996)[7] A typed branching diffusion, a reaction-diffusion equation and travelling-waves. (In preparation).
(2000)[8] Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math. 28, 323-331. | MR | Zbl
(1975)[9] Correction to the above. Comm. Pure Appl. Math. 29, 553-554. | MR | Zbl
(1976)[10] Multiplicative martingales for spatial branching processes. Seminar on Stochastic Processes (ed. E.Çinlar, K.Chung and R.Getoor), Progress in Probability & Statistics. 15. pp. 223-241. Birkhäuser, Boston. | Zbl
(1987)[11] Continuous martingales and Brownian motion. Springer, Berlin. | Zbl
& (1991)[12] Diffusions, Markov processes and martingales. Volume 1: Foundations. (Second Edition). Wiley,Chichester and New York. | Zbl
& (1994)[13] Diffusions, Markov processes and martingales. Volume 2: Itô Calculus. Wiley, Chichester and New York. | Zbl
& (1987)[14] Orthogonal Polynomials (Third Edition). American Mathematical Society Colloquium Publications, Volume XXIII. | MR
(1967)