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A DISCRETE APPROACH

TO THE CHAOTIC REPRESENTATION PROPERTY

M. Émery

Abstract. - In continuous time, let normal martingale (i.e. a process such

that both X~ and Xl - t are martingales). One says that X has the chaotic representation
property if L2 (a(X)) is the (direct) Hilbert sum ® where is the space of all

p-fold iterated stochastic integrals P~~

0t1...tp f(t1,...,tp)dXt1...dXtp
with f square-integrable is called the pth chaotic space; by convention, xo(X) is the
one-dimensional space of deterministic random variables). An open problem is to characterize
those processes X.

Instead of working in continuous time, we shall address an analogue of this problem where

the time-axis is the set Z of signed integers; in this setting, we shall give a sufficient (but
probably far from necessary) condition for the chaotic representation property to hold.

Notation and preliminaries

We shall use the set Z of all signed integers as our time-axis; the set of all finite
subsets of Z will be denoted by P. For m and n in Z, we shall have to do with the

following "intervals" :
: m  A; ~ 7T,} ; ;

]n,oo~={1~E~ : 7~  A:} ; ;
]-oo,n] ={l~E~ : .

1~n~. .
Given a filtration Y = process X = is adapted (respectively
predictable ) if for each n the random variable Xn is Fn-measurable (respectively
~’~_1-measurable); a stopping time is an ~’~-measurable random variable T with
values in Z U {+oo~, such that for each n e Z the event {T = n} (or, for that matter,
{T  r~~) belongs to 1’n; notice that the value -oo is not allowed to stopping times.
An empty sum 03A3 xi is always null, an empty product J"[ zi is always 1.

iE0 iE~

With Z as the time-axis, the analogue of a normal martingale is no longer a

martingale, but a sort of normalized martingale increment:

DEFINITION. - On a probability space (S~,,A., let ~’ _ be a filtration.
A process X = is a novation (more precisely: an F-novation) if, for each
time n e Z, Xn belongs to and verifies

(N1) _ ~ ~

(N2) 
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The name ’novation’ aims at suggesting that X plays the role of an innovation,
but the prefix ’in’ has been dropped to stress that no independence is required. 1
Condition (Nl) says that Xn should be understood as a martingale increment; and
(N2) is a normalization hypothesis. The simplest example of a novation is a sequence
of independent random variables with mean 0 and variance 1.

PROPOSITION 1 AND DEFINITIONS. - Let X be a novation on (S~,,A., ~); for each
A E ~, denote by XA the product ~ Xn . The set of random variables , A E ~}
is orthonormal in LZ (S~, ,A, . 

nEA

So this set is an orthonormal basis of some closed subset of called
the chaotic space associated to X, and denoted by x(X).

If A E ~} is total in P), or equivalently if the chaotic space is
equal to L2 (S~, ~’~, P), one says that X has the chaotic representation property.
The simplest example of a novation with the chaotic representation property is

the fair coin-tossing: the Xn are independent and uniformly distributed on {-1,1~,
and ~’ is the filtration generated by X.

PROOF OF PROPOSITION l. - Fix A and B in P. For the formula

E[XAXB|Fn] = 0 if A~] , ~[ ~ B~]n, ~[;XA~]
-~,n]XB~]-~,n] if A~]n, ~[ = B~]n, ~[.

is true if n is large enough for ] -oo, n] to contain A and B; and if it holds for some
n, it holds for n -1 too because X is a novation. So it holds for every and
in particular when n is small enough for A and B to be included in ] n, oo [. Thus,
for such an n,

~ I ~n] = 0 = 

1 if A = B,
and the proposition is proved by taking expectations on both sides.

Here are five necessary conditions for a novation X to have the chaotic represen-
tation property.

PROPOSITION 2 AND DEFINITION. - Let X be a novation defined on some filtered
, probability space (S2,,A., If X has the chaotic representation property, then

(i) for each the set A E ~, A c ]-oo, n] } is an orthonormal basis of
LZ(~~ ‘~n~ 
(it) the filtration ~’ is generated by X;
(iii) the a-field ~= n~ ~’n~ is degenerate;

’ 

(iv) for all n E Z and U E L2 (~’n ), there exist Q and R in such that

U == Q + RXn,o
(v) for each U E LZ (~’~ ), there exists an ~’-predictable process H = such
that

E [ ~ H,~~  oo and U = IE[U] + ~ HnXn .

n~Z 
nE7G

When (v) holds, one says that the novation X has the predictable representation
property (with respect to the filtration 

1. « Ne crains doncques, Poëte futur, d’innover quelques termes. » (J. du Bellay, La deffence et
illustration de la langue françoyse.)
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The analogy between this definition and the predictable representation property
in continuous time (see for instance [3]) is plain: Xn replaces dXt and £ replaces f .
PROOF. - (i) Fix n E Z. For each A E P, one has XA 1 L2(Fn) if A meets ]n, ~[ and
XA E L2 (~’,~) if A is included in ]-oo,~]. Thus A E ~; A C ~ -oo, n~ } is an

orthonormal basis of L2(Fn) (and A E P; A meets ]n, ~[} is an orthonormal
basis of its orthogonal supplement).

(ii) is a consequence of (i).
(iii) For A E P and A 7~ 0, XA is orthogonal to for every n  sup A,

and a fortiori to So LZ (~ ~ ) is included in the orthogonal supplement to
{XA, A E P, ~~; as this supplement consists of deterministic random variables,

is degenerate.

(iv) We know from (i) that every random variable U E admits an

L2-expansion as

U = 03A3 uAXA
AE~

Ac] 

with  oo. Setting

Q = 03A3 uAXA and R = 03A3 uA~{A}XA ,

AC~ [ AC~ [

one has

RX n = ~ uAXA
AE~

sup A=n

(approximate both sides by finite sums and take limits in L2), whence (iv).
(v) By the chaotic representation property, each U E L2 (~’~ ) has an expansion

~ == L - u~ + Lr ~, .

A~P n~Z A~P
AC~ [

Now, the random variable

Hn = ~ = Lr 
A~P A~P

[ supA=n

belongs to by (i), with squared norm u1; summing in n
gives 

IE ~~ H~~ _ ~ uA  oo ,
~ 

AE~

and, as u~ = = the formula for U becomes + 1
n

The well-known equivalence between extremality and the predictable representa-
tion property (see Theorem (V.4.6) of [3]) becomes completely elementary in our
discrete setting; it is recalled in the next proposition. We shall call ,G the set of all

probability laws on the real line that are carried by two points, and have mean 0 and
variance 1. In other words, an element of £ is a probability of the form p8a + qb6,
with p > 0, q > 0, p + q = 1, pa + qb = 0, and pa2 + qb2 = 1.
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LEMMA 1. - For each h E l~, there is a unique law .P(h) E ~ supported by the two
roots of the quadratic equation x2 =1 + hx; it gives mass 1/(1 +x2) to each root x
of the equation. Moreover, this map ~ : l~ -~ ,~ is a bijection.
PROOF. - The roots of x2 = 1 + hx are two real numbers y and z with product
- 1, so one is strictly positive and the other strictly negative. There is a unique
probability law 03BB carried by y and z and having mean 0; it weights y with mass
z/(z-y) =1/(1+y2) and z with y/(y-z) =1/(1+z2). And any random variable X
with law a verifies X2 =1 + hX and = 0, whence E =1, so a E ~G.

Conversely, any a E ~G is supported by two points, so a random variable X with
law 03BB verifies a quadratic equation X 2 = hX + k; taking expectations gives k =1,
so l is surjective..

The elements of ,C can also be characterized as the centered laws with unit variance that
are extremal in the set of all centered laws. They are a fortiori extremal in the smaller set
of all centered laws with unit variance, but this is no longer a characterization: the extreme
points of the set of all centered laws with unit variance are the centered laws with unit
variance carried by two or three points.

PROPOSITION 3. - Let X be a novation on a filtered probability space (S~,,A., 
a) The following three conditions are equivalent:

(i) there exists a predictable process H such that XZ =1 + HX;
(ii) there exists a predictable process L with values in ,G such that, for all Borel f
and all = I’n+1(f )i
(iii) there exists a predictable process L with values in ,~ such that, for all Borel f
and all stopping times T, = LT+1 (f ) on the event {T  ~}.

If X has the predictable representation property, then is degenerate, and
the three conditions (i) - (iii) hold.

b~ If is degenerate, the following five conditions are equivalent:
(iv) X has the predictable representation property;
(v) for each there exists an event h such that ~’n+1= r);
(vi) for all n E ~ and all random variables U E LZ (~’n+1 ), one has

U =1E + .

(vii) for all n E Z and all Fn+1-measurable random variables U, there are two
Fn-measurable random variables Q and R such that U = Q + RXn+1;
(viii) for all stopping times T and all FT+1-measurable random variables U, there
are two FT-measurable random variables Q and R such that U = Q + RXT+l on
the event {T  oo} .

c~ If is degenerate and if is the filtration generated by X, all eight
conditions (i) - (viii) are equivalent to each other, and to the following further
two conditions:

(ix) for all n E Z and all U E L2 (~’~), one has U = ~ E ~UXA ~’n~ XA;
AE~

AC] rt,oo [

(x) for all stopping times Sand T such that S  T and all U E one has
U - ~ 

AE~
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Condition (i) is called a structure equation its analogue in continuous time has
the form d[X, == dt+Ht dXt. Conditions (i) to (iii) say that the natural filtration
of X is dyadic. Conditions (iv) to (viii) say that the filtration ~’ itself is dyadic (given
the past ~’n _ 1, the innovation consists in choosing among two possible values only for
Xn, or equivalently in choosing the sign of Xn). But these conditions (iv) to (viii) do
not imply that ~’ is generated by X; they do not even imply that ~’ is generated by
any novation whatsoever (see Vershik’s Example 2 in [5]). Conditions (ix) and (x)
are the conditional chaotic representation property at times n and S ; it is essential
here that n and S are not allowed to take the value -oo: when n and S are -oo,
these conditions become the (unconditional) chaotic representation property, which
is in general strictly stronger than the predictable representation property. The rest
of this work will precisely be concerned with the gap between these properties: which
hypothesis should be added to the predictable representation property to imply the
chaotic representation property? We shall only give a very partial answer.

PROOF OF PROPOSITION 3. - (i) =~ (ii). Assuming (i), define an ’c-valued

predictable process L by Ln = where .~ is the map defined in Lemma 1.
As = 1 + is a.s. one of the two points of the support of

as and = 1, the conditional law of Xn+l
given 1’n must be Ln+l. This gives (ii).

(ii) =~ (iii). Assuming (ii), for each n E Z the conclusion holds on the event
{T = r~}, so it holds on {T  oo}.

(iii) =~ (ii) is trivial, and to obtain (ii) =~ (i) it suffices to define the predictable
process H by f(H) = L.

Assuming X has the predictable representation property, for every U E LZ (~’~ ),
there is a predictable H such that ~n  oo and U = + ~n 
this implies that the (square-integrable) martingale Mn - IE ~U ~ ~’n~ is given by
Mn = E[U] + HmXm. For U E L2 (~ ~ ), one has U = E ~U~ showing that

is degenerate.
We now pass to the equivalence of (iv) - (viii); the end of a), that is, (iv) =~ (i),

will be established later.

(iv) =~ (vi). We suppose X has the predictable representation property. The
martingale argument a few lines above implies that, for every U E It (~n+1 ), one
has U = + Hn+1Xn+l. As U and are in L2, so is too.

Multiplying both sides by and conditioning by ~’,~ gives Hn+l = 
whence (vi).

(vi) =~ (v). Choosing U = in (vi) yields = 

and shows that ~X,~+1= 0} is in Using (N2), this implies X~+1 ~ 0 a.s., and,
using (N1), > o a.s.

Choosing now U = in (vi) gives = with Q and
R measurable for 1’n and R = E > o. So Xn+l = ~o} - Q)~R, and
(vi) becomes 

’

dU E U = E[U|Fn] + E[UXn|Fn](1{Xn+1~0}-Q)/R ,

showing that is generated by 1’n and the event 0~.
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(v) ~ (vii). Hypothesis (v) implies for each n the existence of two Fn-measurable
random variables F and G such that Xn+i = F llr + G llrc. Observing that
Xn+1 - + FG = 0 and conditioning on one obtains FG = -l.

Consequently, F ~ G a.s. and llr = Using (v) again, every
~’,~+1-measurable U has the form Vllr + W, with V and W measurable for ~’n;
replacing llr by shows (vii).

(vii) ~ (viii). Given an FT+1-measurable U, apply (vii) to each Un = U 
(vii) and (?_oo degenerate) =~ (iv). Let U be any random variable in 

and M be the martingale Mn = When applied to (vii)
gives 2014 Mn = for some 3~-measurable (Q vanishes by
conditioning on ~’n); so one has Mn - Mm = Hm+1Xm+1 + ... + HnXn for m  n.

Since is degenerate, Mn tends to a.s. and in L2 when n - -oo; it also
tends to Moo = U when n - +00, so U = + ~ HnXn. Writing

n~Z

,

one obtains + ... + = for m  n, giving in the limit
= ~~U2] - ~w]2  oo.

n

Proposition 3 b) is completely proved; to end proving a), that is, proving
(iv) =~ (i), it suffices to establish (vii) =~ (i). That is quite easy: Hypothesis (vii)
gives = Q + and Q == 1 is obtained by conditioning on 

We now start showing c); from here on, we assume ~’ to be generated by X and
to be degenerate.

(i) =~ (v). From X; = 1 + HnXn it follows that Xn = f(Hn, where

f(h,O) = 2 (h - h2 + 4) and = 2 (h + h2 + 4). This formula shows that
~’n, which we know is generated by and Xn, is also generated by and the

event {Xn > 0~.
(vi) =~> (ix). Iterating (vi), one obtains for all m and n in Z such that n

dU ~

Ac]m,n]

Indeed, fixing n, it is true when m = n (for the right-hand side consists in
one term only, and if it holds for some m  n, one sees

that it also holds for m - 1 by applying (vi) to replace each by
+ 

To obtain (ix), it suffices to let n tend to infinity in this formula; convergence
takes place in L2 owing to the following estimate:

~ 
AC] m,n] A,BC]m,n]

= E [E[U|Fn]2|Fm]  E[U2|Fm].
(ix) =~ (x). For m x n and U E _ ~ if sup A > n, so (ix)

implies U = E ~’ Thus,
AC]m,n]

dU E _ 
~
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If S is a stopping time and if m ~ n,

Ac]m,n]

= 

summing in m gives AEP

(*) ) on the event {S  r~}.
AE~

On the complementary event {S > n}, the right-hand side is just taken

together, these two results can be rewritten

~ ’

A~P

Letting now n tend to oo, this yields, for all U E L2 (~~ ),
~ _ ~ ’

AE~

Given a stopping time T > S and a U E LZ (~’T), we have to show that
U = L ~

AE~

it suffices to verify that the difference between the right-hand sides of these two
formulas vanishes:

L L n{A meets 
AE~

Saying that A meets ]T, oo [ amounts to saying that sup A > T (with the convention
sup ø == -oo). This sum can be rewritten

sup A=n+1

= L L 
n~Z B~P

= ~ Xn+l ~ ’

n~Z B~P

Now, on the event {T  n}, one has a fortiori S ~ n, so we may use (*) to transform
the sum over B into yielding ~n Xn+l Taking
into account that {T  n} belongs to and that is Fn-measurable (because
U is FT-measurable), the conclusion is obtained by writing

- ~’ = = 0 .

(x) =~ (vi) is trivial by taking S = n and T = n + 1. 1

From now on, we suppose given a novation X and its natural filtration and we

assume that X enjoys the predictable representation property with respect to so

all ten conditions (i) - (x) of Proposition 3 hold. They do not imply the chaotic
representation property (see [2] for a counterexample); the question is to find

additional conditions that are sufficient for the chaotic representation property to

hold. Observe that the problem depends only on the law of the process X; so the
conditions we are looking for are conditions on the law of X.
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Two simple instances of chaotic representation property
The simplest case is when the Xn are independent; by Proposition 3 (ii), the

law of each Xn belongs to ,G, and an easy dimension argument gives the chaotic
representation property:

PROPOSITION 4. - If the novation X consists of independent random variables
Xn, each with law in ,G, the chaotic representation property holds.
PROOF. - Let be an increasing sequence in ~’ with limit Up Ap = Z. By
martingale convergence, any random variable in can be approximated by
its projection on so it suffices to establish that for fixed A E P,
the space S’A = is included in the chaotic space x(X). Each Xn
takes two values, hence the random vector takes values, and SA has
dimension 2~A~ . But the subspace SA of SA with orthonormal basis ~XB, B c A~ also
has dimension 2 ( A ~ ; thus SA = SA, whence SA C x(X) ..

Another case is when the novation X is deterministic in some neighbourhood
of -oo; before giving a precise statement (Proposition 5), we prove an auxiliary
lemma saying that the chaotic representation property needs to be checked near
- oo only. Recall that stopping times are not allowed to assume the value -oo.
LEMMA 2. - Let T be a stopping time. If C X(X), the chaotic representation
property holds.

PROOF. - By replacing T with T A 0, we may suppose T  +00 a.s. To prove the
lemma, it suffices to show

(*) L2(~T+1) C I

for this implies .first L2 (~’T+p) C x(X) for each and then C x(X)
since L2(~’T+p) is dense in by martingale convergence.

To show (~), take any U E L2(~’T+1) and apply Condition (viii) of Proposition 3
to U - this yields U = E + KXT+1 for some FT-measurable K. As

- ~~~I~TJ2 + 
K belongs to L2(~’T). Observing that U = + and that

E x(X), it suffices to verify that is in x(X ). But we know
to be in C so it has an expansion of the form

03A3 uAXA, and its product with Xn+l is in x(X) too, with chaotic expansion

03A3uAB{n+1}XA . []
AE~

sup A=n+ 1

PROPOSITION 5. - The following five conditions are equivalent:
(i) there exist a random variable S with values in Z U {+~} and a predictable
process Y = such that X = Y on the random interval ]-~, S[;
(ii) there exist a stopping time T such that > n] > 0 for all n E Z and a
deterministic process y = such that X = y on ~-oo, T ~, XT = on

and

P[Xn=yn|Tn]=1 1+y2n P[Xn=-1/yn|Tn=y2n 1 + y2n;
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(iii) the predictable process H of Proposition ~ (i) verifies ~ 1 2  oo a.s.;

(iv) the series ~ X; converges a.s.; ; 
1 + Hn

nfi0

(v) with probability 1, |Xn|  1 for all n small enough.

When these conditions are met, the a-field is generated by T, and the chaotic

representation property holds.

For an analogue of this statement in continuous time, see Théorème 5 of [1] and
Théorème 5.3.6 of Taviot [4].

Convergence of the series in (iv) holds a.s. but not in Ll, for = 1.

PROOF OF PROPOSITION 5. - (i) =~ (ii). Fix n such that > n] > 0. We shall first
see by induction that for every m x n there exists an Fm-measurable random variable
Zm such that Xn = Zm on the event {S > ?~}. This is true for m = n with Zn = Xn.
Supposing it to hold for some m ~ n, there exists a Borel function f such that

Zm = f (... , Xm_2, Xm_1, Xm); so on ~S > n~, Xm = f (. .. , Xm_2, Xm_1, Ym), and
it holds for m-1 too, with Zm-1 = f(..., , Xm-2 Xm-1, Ym) being Fm-1-measurable
because Y is predictable.

Consequently, = = Zm > n ~~m~, and

= .

Letting m tend to -oo, we get = Xn > n~, showing
that Xn is the constant zn = on the event ~ S > n~ . Unfixing n, we
obtain that X agrees with some deterministic process x on the interval] -00, S’[[.
By Condition (i) of Proposition 3, there is a predictable process H such that

XZ = 1 + HX; so 03A6 = 2 (H+ H2+4) and W = 2(H- H2+4) are two predictable
processes such that -1 and that for each m, Xm is a.s. equal to lfm or ~m.
There are two Borel functions 03C6m and 03C8m such that 4lm = 03C6m(... , Xm_2, Xm-l)
and ~m(... , Xm_2, Xm_1).

Fix again n such that > 0. Define a deterministic process y = 

by ym = zm if and (inductively) by ym = , ym-2 if m > n.

For m ~ n, > 0; putting Em = dh  m~,
one has > 0. But the conditional law of Xm given Em is the law

supported by the two points ~m(... , ym_2, ym-1) and ~m(... , ym-2, ym-1). So
ym is one of these two points and -l/Ym is the other one; this holds for m > n too
by the very definition of ym.

Put T = inf {m : : Xm ~ As T is minorated by S A n, it does not take the
value -oo, and T is a stopping time. On the event ~T > m~, X and y agree up to
time m-1, and Xm takes the two values ym and -l/Ym with respective probabilities
given by Lemma 1 :

=1/(1+ym) and _ 
’

On ~T =m~, one has furthermore Xm ~ ym, whence Xm - -1/ym, and
XT = on {T  oo}. Last, for each m E Z, the essential supremum of T
cannot be m since > m~ = = > m~ = 1/(1+ym) > 0; thus
T is not bounded above.
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(ii) ~ (iv). If (ii) holds, iterating the relation - 1 gives
for n  0

P[T>0|T>n] = 1 1+y2m
and, taking the limit -oo,

n 2014r. .
mo 

1 + ~m

The left-hand side being strictly positive by hypothesis, the infinite product must
converge,  oo. As Xn = yn for all n  T, ~ X;  oo a.s.

nx0 nx0

(iv) =~ (iii). According to the structure equation X2 = 1 + HX, the process X
never vanishes and H = X - 1/X. Hence 1/(1+H2) = X2,
and if the series ~ X n is a.s. convergent, so is also ~ 1/(1+~). .

nx0 n0

(iii) =~ (i). One of the roots of the structure equation x2 = 1 + ~x satisfied
by Xn is + Hn + 4), with the convention sgn 0 = 1. Notice
that the predictable process ~ verifies ( > so the series ~ 1/(1+~~) is
a.s. convergent. Set no 

: ~l}- .
mxn 

Because the series is convergent, T > -oo a.s. As 03A6 is predictable, T is a predictable
stopping time (i.e. T-1 is a stopping time) and the event ~n  T} is in By
Proposition 3 (ii) and Lemma 1, = lI(1+~n), so one can write

E[1{Xn=03A6n}] = E[1{nT}P[Xn= 03A6n|Fn-1]] = E[03A31{nT}P[Xn=03A6n|Fn-1]] = E[03A31 1+03A62n]  1.

Consequently, the sum is a.s. finite; so, with probability 1, for all
but finitely many n  0, Xn is the other of the equation, and (i) holds
with Y = -1/~.

(iv) =~ (v) is trivial.

(v) =~ (i). The two roots of the structure equation x2 = 1 + satisfied by
Xn are 4ln = + Hn + 4) and they verify 1 and

~ -1 / ~n ~  1. So X is equal to the predictable process Y = -1 / ~ on the random
set {|X| 1 }. By hypothesis, this random set contains a random interval ]-00, S[
with S > -oo a.s., so (i) holds.

(ii) ~ (a(T) = Supposing (it) to hold, let U be any FT-measurable random
variable. There is for each n E ZU{ +oo} a Borel function Un such that

U = + ~ 
n~Z

- + ~ ~(..., 
nE7G

- mE + ~ 2Gn(... , yn-2~ i
n~Z

since y is deterministic, U is a(T)-measurable.
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(ii) ~ (chaotic representation property). Fix n G Z. For any A G T, one has

yAP[T=n] if A ~ ]-~,n[;

IE[XA1{T=n}] = {yAB{n}(-1) ynP[T=n] if sup A = n;

0 if sup A > n.

Squaring and summing over A yields

(E[XA1{T=n}])2=P[T=n]2 (y2n+y2n1 y2n)
[

=P[T=~(l+-) ~ ~~ ~eT
[

=p[r=~(i+-)n(i+~).yg mn 
’~~

Now, by induction on k  n, P[T = k] = 2014’~ JJ[ 20142014~-, so, in the limit
when k ~ -~, 

y2n 1+y2n 03A0 1 1+y2m = P[T=n],
and the above sum becomes

(E[XA1{T=n}])2 = P[T=n]21 P[T=n] =P[T=n] = E[(1T=n)2].

The left-hand side is the squared L2-norm of the orthogonal projection of on

the chaotic space x(X); the right-hand side is the squared L2-norm of itself.
Their being equal shows that belongs to x(~0? and, n being arbitrary, that

c x(~). We have seen above that a(T) = so c x(~), and the
chaotic representation property holds by Lemma 2..

Another, less simple, case of chaotic representation property

Recall the context: X is a novation, JI is its natural filtration, and all ten

conditions of Proposition 3 are in force; in particular, by condition (v), 3" is dyadic
and by condition (iv) is degenerate. In this section, we shall work in a narrower
setting: we shall further suppose that 9" is generated by a process taking values in
a two-point space (the set {20141,1} will be convenient). Example 2 of Vershik [5]
shows that this additional hypothesis is not a consequence of the other assumptions.
LEMMA 3. 2014 ~ Let 6; be a process with values in {20141,1}; call 8 the natural

filtration of c and suppose > 0 a.s. for e Z. There exists a

unique £-novation Xé such that sgn X~ = ~; moreover, X~ has the same natural
filtration 8 as 6’.

b) Suppose given a filtration 9" and an 9=’ -novation X; put ~ = sgn X (with for
instance sgn 0 = 1). The following two conditions are equivalent:
(i) both processes X generate the same filtration;

(ii) the novation J~~ defined in a) is equal to X.
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REMARKS. - a) In Lemma 3 b), since X is an F-novation, Var[~n|Fn-1] > 0, and
a fortiori > 0 where e is the filtration generated by c. Hence the
process X~ in condition (ii) is well defined.

b) If the time-axis is ~n e Z : : n  0~ instead of Z, conditions (i) and (it) in b)
are also equivalent to the seemingly weaker condition:

(if) the processes X and 6; generate the same a-field.
To check this, calling 9=’ (respectively 8) the natural filtration of X (respectively ~),

it suffices to verify that if = En, then Fn-1 = Supposing Fn = ~n,
Xn = + for some ~n-1-measurable U and V. This implies
(Xn-U)(Xn-V) - 0; expanding and conditioning on gives UV = -l;
in particular, U ~ V a.s., and {Xn = U} _ {~n =1}, {Xn = V } _ {~n = -1},
Now if W is any Fn-1-measurable random variable, it is also en-measurable, so
W = + with Q and R measurable for This can be
rewritten as W = AXn + B, where Ax + B is the ~n-1-measurable affine function
mapping U to Q and V to R. Conditioning on kills the term AXn, so W = B,
and W is ~n-1-measurable. This proves = 

PROOF OF LEMMA 3. - a) If X is any ~-novation, then, owing to the filtration e
being dyadic, Xn = Aen +B, where A and B are ~n-1-measurable. Condition (N1)
implies Xn = A (~n - and (N2) then yields 1 = 

If furthermore sgn X = c, A cannot be negative, and one gets

’~ 
- 

Conversely, X defined by this formula is an E-novation; and as I  1
and = 1, one has sgn Xn = This proves existence and uniqueness.

Since sgn X = e, the natural filtration e of ~ is included in that of X; but the
explicit formula for Xn shows that X is adapted to 8; so X generates 8.

b) (ii) ~ (i) is an immediate consequence of a). Conversely, if an F-novation X
and its sign E have the same natural filtration 8, e is included in y, so X is also an
~-novation, and X = X~ by uniqueness in a). []
PROPOSITION 6. - Let E = be a process with values in ~-1, l~ and call ~’
its natural filtration. Suppose

(i) the process ~ is Markov (but not necessarily homogeneous) ;
(ii) the a-field is degenerate;

(iii) > 0 a.s. for each n E Z.

Under these assumptions, the F-novation X~ (defined in the previous lemma)
has the chaotic representation property.
PROOF. - We shall simply write X instead of X~. Notice that all ten conditions of
Proposition 3 hold. If (Zn)nEZ is any process, we shall set ZA Zn for A E P.

neA
As E is a Markov process, the conditional expectation is a function

of it takes values in [-1,1], and more precisely in the open interval (-1,1)
since > 0. Hence we may put = sin8n, for some random
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variable en = depending on only, and with values in (-~, ~). And
as takes only the values -1 and 1, en = for two real numbers

an = and ~n = 

that are both in the open interval (- 2 , 2 ). With these notations, the formula giving
Xn in the proof of Lemma 3 becomes Xn = (~n - sin On)/ cos en. This implies
Cn = Xn cos On + sin en; squaring both sides gives X; = 1- 2 Xn tan en and
shows that the predictable process H appearing in the structure equation satisfied
by the novation X is H = -2 tan 0398.

For m ~ n in Z, call x’~ (respectively x~) the closed subspace of x(X) with
orthonormal basis {XA, A C ] -oo, n] } (respectively {XA , 
notice that x~ has finite dimension 2n-m and that for U E xm and V E xm
the product UV belongs to .

As ~’~ = n E ~), the chaotic representation property will be established if
we show that the chaotic space x(X) contains every random variable of the form
f (~m+1, ... , en). For fixed m and n, those random variables form a finite-dimensional
vector space, with basis {~A , A nj ~; so it suffices to show that each EA belongs
to x(X).

The first step of the proof will consist in establishing that for every A 
there exist Q and R in xm such that ~A = Q + For fixed n, this will be shown

by induction on m ~ n. If m = n, the only possible A is A = 0, and the property
holds trivially with Q =1= X~ and R = 0. Suppose now it holds for some m  n.
Replacing 8m by + /3m in the formula em = Xm cos 0398m + sin 8m gives
an expression of the form Cm = (aXm+b) + Now every subset A of

is either of the form B, or of the form {m}U.B, for some B c By
induction hypothesis, cB = Q + REm with Q and R in so cA is either Q + R~m
or Qcm + R, and replacing ~m by (aXm+b) + establishes the claim.

Owing to this property, to show that ~A is in x(X) for A C it suffices to

show that Cm is in Without loss of generality, we shall do it for m = 0 only: the
rest of the proof will consist in establishing that co belongs to the chaotic space xo
generated by 

Set

(Qn) = ( cos 03B2n sin 03B2n) (Xn)Rn = -sin 03B2n - cos 03B2n 1 .

Rewriting (N1) and (N2) as

IE~~_1 X 1 n ( Xn 1 ) = Id ,
one has

EFn-1[(Qn Rn)(Qn Rn) = (cos 03B2n sin 03B2n -sin 03B2n cos 03B2n) Id (cons 03B2n -sin 03B2n sin03B2n cos 03B2n) = Id

whence = 1 and 0. Consequently, by
induction on n ~ 0, if A and B (respectively A’ and B’) are two disjoint sets with
union A U B = A‘ ~ B’ = ]n, 0],

E[(QARB)(QA, RB, )|Fn] = {1 if A = A’ and B = B’
0 else;
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and when (A, B) ranges over all pairs of complementary subsets of the r.v.’s

QARB form an orthonormal basis of the subspace x° . The orthogonal projection of
co on this subspace is

QARB ~

AnB=0

To show that co is in the chaotic space, it suffices to show that it is the L2-limit of

Proj~0n co when n - -oo; as = 1, this reduces to proving that ~Proj~0n ~0~2
tends to 1, or equivalently that 

’~

~ --~ 1 when r~ --~ -oo.

AnB=0

Set Un = Qn cos an and Vn = Rn sin One has

cn = Xn cos en + sin en

= ( + + ~n) J ( 1 )
= (cos(03B1n~n-1) sin(03B1n~n-1))

(cos 03B2n sin03B2n - sin 03B2n cos 03B2n) (Xn 1)

= (cos 03B1n ~n-1 sin 03B1n )(Qn Rn) = Un + ~n-1 Vn

Iterating this formula, one obtains

= cos03B10 Q0 + cos 03B1-1 sin 03B10 Q-1R0 +...
+ cos sin ... sin ao ... Ro

sin an+1... sin Ro . .

Multiplying by QARB (where A U B and A n B = 0) and conditioning
by ~’n, all terms cancel but one, and there only remains

. if A = 0 and B 

1

. if j4 7~ 0 and sup A = m E 

= IE [cos C1m sin am+1 ... sin 03B10 QA~]n,m-1]RB~]n,m-1]Q2mR2m+1...R20|Fn]

= cos am sin am+1 ... sin [QAn] n,m-1] 
= cos am sin am+1... sin ao 03A0 sin 03B2a 03A0 cos 03B2b

aEA bEB
am bm

(the latter follows from = sin 03B2l and = Taking
expectations, squaring and summing gives ~Proj~0n~0~2 as the sum of two terms.

The first term, corresponding to A = 0, is 
’~

2 1
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the second term is the sum

~ cos’ am sin’ am+1... sin’ ~o ~ ~ ~ 
beB

AnB=0

- ~ cos’ am sin’ c~~~i... sin’ c~o ~[ fla + cos’ fla)
mE]r~,0] 

= 03A3 cos2 03B1m sin2 03B1m+1 ... sin2 03B10
?Tt~]yt,0]

- ~ (sin2 am+1... sin2 ao - sin2 am sin2 Q~~~i... sin2 ao)
T7TE]Tt,0]

°

Putting both terms together gives

Eo~~2 =1- (1- IE~~~,~2) sin’ a,~+1... sin’ ao
== 1 2014 sin’ o’~_)_i... sin’ c~o ,

and to establish the chaotic representation property it suffices to verify that
sin2 03B1n+1... sin2 03B10 Var ~n ~ 0 when n tends to -oo.

Clearly, this holds if the product sin’ ao tends to 0 (for Var ~n  1);
hence we only have to consider the case when the infinite product ~[ sin’ an is

convergent. no

We shall show that in that case, condition (iii) of Proposition 5 is fulfilled; as the
chaotic representation property always holds in the degenerate situation considered
in that proposition, our Proposition 6 will thus be established in full generality.

That condition says that the series (1+Hn) 1 converges a.s., where H is
the predictable process featuring in the structure equation satisfied by the novation
X. At the beginning of the proof, we saw that Hn = -2 consequently

1 
_ _ 

1 1 
_ 2 ..

1 + H2n 1 + 4 tan20398n 1 + tan2 0398n = cos2 0398n,

and it only remains to establish that the sum £ cos’ On is a.s. finite.
nfi0

Put an = 2 - ~an ~. Since the values assumed by On are a,~ and ,~n + an,
one has -03C0 2  03B2n - |03B1n|  03B2n + | 03C0 2, whence 

2 - 2a,~ _ - 2 +  ~n + lan  ~ 2

and On = ,~n ~ a,a e (- 2 , - 2 +2an) U ( 2 - 2~a,a, 2 ) . As the infinite product is

convergent, sin’ 03B1n ~ 1, so 03B1n ~ 0, and 203B1n  2 for all n small enough. For these n
one has hence
also cos2 0398n  4 cos2 03B1n = 4 ( 1- so convergence of the infinite product
03A0 sin2 03B1n implies convergence of the series 03A3 cos203B8n. []

The Markov hypothesis (i) in Proposition 6 has been used to perform explicit
computations on the process ~; it is not clear whether the result remains true or not
when this hypothesis is dropped.
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