@article{SPS_2001__35__153_0, author = {Fitzsimmons, Patrick J.}, title = {Hermite martingales}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {153--157}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {35}, year = {2001}, mrnumber = {1837284}, zbl = {0979.60028}, language = {en}, url = {http://archive.numdam.org/item/SPS_2001__35__153_0/} }
Fitzsimmons, Patrick J. Hermite martingales. Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 153-157. http://archive.numdam.org/item/SPS_2001__35__153_0/
[1] Handbook of Mathematical Functions (Reprint of the 1972 edition). Dover, New York, 1992. | MR
and :[2] Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, N.J., 1964. | MR | Zbl
:[3] Gaussian Hilbert Spaces. (Cambridge University Press, Cambridge, 1997. | MR | Zbl
:[4] The Malliavin Calculus and Related Topics. Springer-Verlag, New York, 1995. | MR | Zbl
:[5] A stochastic characterization of Hermite polynomials, J. Math. Sci. 89 (1998) 1541-1544. | MR | Zbl
:[6] Probability Theory. Cambridge University Press, Cambridge, 1993. | MR | Zbl
: