@article{SPS_2001__35__28_0, author = {Privault, Nicolas}, title = {Quantum stochastic calculus for the uniform measure and {Boolean} convolution}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {28--47}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {35}, year = {2001}, mrnumber = {1837275}, zbl = {0981.81044}, language = {en}, url = {http://archive.numdam.org/item/SPS_2001__35__28_0/} }
TY - JOUR AU - Privault, Nicolas TI - Quantum stochastic calculus for the uniform measure and Boolean convolution JO - Séminaire de probabilités de Strasbourg PY - 2001 SP - 28 EP - 47 VL - 35 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_2001__35__28_0/ LA - en ID - SPS_2001__35__28_0 ER -
%0 Journal Article %A Privault, Nicolas %T Quantum stochastic calculus for the uniform measure and Boolean convolution %J Séminaire de probabilités de Strasbourg %D 2001 %P 28-47 %V 35 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_2001__35__28_0/ %G en %F SPS_2001__35__28_0
Privault, Nicolas. Quantum stochastic calculus for the uniform measure and Boolean convolution. Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 28-47. http://archive.numdam.org/item/SPS_2001__35__28_0/
[1] Calcul stochastique non-commutatif. In Ecole d'été de Probabilités de Saint-Flour, volume 1608 of Lecture Notes in Mathematics. Springer-Verlag, 1993. | MR | Zbl
.[2] Processes with free increments. Math. Z., 227(1):143-174, 1998. | MR | Zbl
.[3] Positive definite functions on the free group and the noncommutative Riesz product. Boll. Unione Mat. Ital., A5:13-21, 1986. | MR | Zbl
.[4] An introduction to probability theory and its applications. Vol. II. John Wiley & Sons Inc., New York, 1966.
.[5] Quantum and non-causal stochastic calculus. Probab. Theory Related Fields, 97:65-80, 1993. | Zbl
.[6] Semimartingales: a Course on Stochastic Processes. de Gruyter, 1982. | MR | Zbl
.[7] Quantum Probability for Probabilists, volume 1538 of Lecture Notes in Mathematics. Springer-Verlag, 1993. | MR | Zbl
.[8] Special Functions of Mathematical Physics. Birkäuser, 1988. | MR | Zbl
and .[9] An Introduction to Quantum Stochastic Calculus. Birkäuser, 1992. | MR | Zbl
.[10] A different quantum stochastic calculus for the Poisson process. Probab. Theory Related Fields, 105:255-278, 1996. | MR | Zbl
.[11] Calcul des variations stochastique pour la mesure de densité uniforme. Potential Analysis, 7(2):577-601, 1997. | MR | Zbl
.[12] Orthogonal Functions, Revised English Edition. Interscience publishers, New York, 1959. | MR | Zbl
.[13] Direct sums of tensor products and non-commutative independence. J. Funct. Anal., 133(1):1-9, 1995. | MR | Zbl
.[14] A new example of "independence" and "white noise". Probab. Theory Related Fields, 84:141-159, 1990. | MR | Zbl
.[15] Boolean convolution. In D. Voiculescu, editor, Free probability theory. Papers from a workshop on random matrices and operator algebra free products, volume 12 of Fields Inst. Commun., pages 267-279, Toronto, 1995. American Mathematical Society. | MR | Zbl
and .[16] Free random variables. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, volume 1 of CRM Monograph Series. American Mathematical Society, Providence, RI, 1992. | MR | Zbl
, , and .