Are squared Bessel bridges infinitely divisible
Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 421-424.
@article{SPS_2001__35__421_0,
     author = {Eisenbaum, Nathalie},
     title = {Are squared {Bessel} bridges infinitely divisible},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {421--424},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {35},
     year = {2001},
     mrnumber = {1837302},
     zbl = {0974.60068},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_2001__35__421_0/}
}
TY  - JOUR
AU  - Eisenbaum, Nathalie
TI  - Are squared Bessel bridges infinitely divisible
JO  - Séminaire de probabilités de Strasbourg
PY  - 2001
SP  - 421
EP  - 424
VL  - 35
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_2001__35__421_0/
LA  - en
ID  - SPS_2001__35__421_0
ER  - 
%0 Journal Article
%A Eisenbaum, Nathalie
%T Are squared Bessel bridges infinitely divisible
%J Séminaire de probabilités de Strasbourg
%D 2001
%P 421-424
%V 35
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_2001__35__421_0/
%G en
%F SPS_2001__35__421_0
Eisenbaum, Nathalie. Are squared Bessel bridges infinitely divisible. Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 421-424. http://archive.numdam.org/item/SPS_2001__35__421_0/

[P-Y] Pitman J. and Yor M. : A decomposition of Bessel bridges. Z. Wahrscheinlichkeitstheorie verw. Gebiete 59,425-457 (1982). | MR | Zbl

[S-W] Shiga T. and Watanabe S. : Bessel diffusions as a one-parameter family of diffusion processes.Z. Wahrscheinlichkeitstheorie verw. Gebiete 27,37-46 (1973). | MR | Zbl