Generalized variational principles
Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 183-193.
@article{SPS_2002__36__183_0,
     author = {Dermoune, Azzouz and Moutsinga, Octave},
     title = {Generalized variational principles},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {183--193},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {36},
     year = {2002},
     zbl = {1038.60045},
     mrnumber = {1971585},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_2002__36__183_0/}
}
TY  - JOUR
AU  - Dermoune, Azzouz
AU  - Moutsinga, Octave
TI  - Generalized variational principles
JO  - Séminaire de probabilités de Strasbourg
PY  - 2002
DA  - 2002///
SP  - 183
EP  - 193
VL  - 36
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_2002__36__183_0/
UR  - https://zbmath.org/?q=an%3A1038.60045
UR  - https://www.ams.org/mathscinet-getitem?mr=1971585
LA  - en
ID  - SPS_2002__36__183_0
ER  - 
Dermoune, Azzouz; Moutsinga, Octave. Generalized variational principles. Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 183-193. http://archive.numdam.org/item/SPS_2002__36__183_0/

[1] M. Bardi, L.C. Evans, On Hopf's formula for solutions of Hamilton-Jacobi equations, Nonlinear Anal., 8 (1984), pp. 1373-1381. | MR 764917 | Zbl 0569.35011

[2] Y. Brenier, E. Grenier, Sticky particles and scalar conservation laws. Siam. J. Numer. Anal. Vol. 35, No. 6, pp. 2317-2328, December 1998. | MR 1655848 | Zbl 0924.35080

[3] A. Dermoune, Probabilistic interpretation for system of conservation law arising in adhesion particle dynamics. C. R. Acad. Sci.Paris, 1998, tome 5. | MR 1649309 | Zbl 0920.60087

[4] A. Dermoune, Probabilistic interpretation of sticky particles model. The Annals of Probability, 1999, Vol. 27, No. 3, 1357-1367. | MR 1733152 | Zbl 0960.60055

[5] A. Dermoune, Sticky particles and propagation of chaos. Nonlinear Analysis 45 (2001), 529-541. | MR 1838945 | Zbl 0992.60064

[6] E. Hopf, The partial differential equation ut + uux = µuxx. Comm. Pure Appl. Math. 3, 201-230, (1950). | Zbl 0039.10403

[7] Weinan E., Yu.G. Rykov, Ya.G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 177, 349-380, (1996). | MR 1384139 | Zbl 0852.35097