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About projections of logarithmic Sobolev
inequalities

L. Miclo*

Abstract

We derive bounds for the logarithmic Sobolev constant associated to some
finite type Fleming-Viot operators different from those recently obtained by
Stannat. We will verify that on large subdomains of the space of underlying
parameters, our estimates are of the right order, nevertheless, the result of
Stannat remains better for some small values. Our approach is based on an
uplifting of the problem to gamma distribution product spaces, leading us to
evaluate the logarithmic Sobolev constant corresponding to Laguerre operators
via Hardy’s inequalities techniques.

Keywords: Logarithmic Sobolev inequalities, finite type Fleming-Viot generators,
Laguerre operators, gamma distributions, Hardy’s inequalities.
MCS 2000: 60J60, 37A25, 46E35, 47F05, 49R50.

1 Introduction

Recently, Stannat [13] gave a lower bound on the logarithmic Sobolev constant of
Fleming-Viot operators with parent-independent jump mutation and without selection
nor recombination, when the type space is finite. Our objective is to present an
alternative approach to this problem which will result in different estimates, which will
be of the right order for large values of the underlying parameters. Nevertheless, we
cannot expect our lower bound to be appropriate everywhere, since in some situations
it is worse than the estimate of Stannat and this will lead us to present a conjecture
for a general behavior and what is still missing to obtain it.

Our basic idea is to take advantage of some projection properties inherent to the
model and leading to the consideration of products of one-dimensional objects appro-
priate for the use of Hardy’s inequalities. This feature enables to avoid the iterative
method of Stannat and we believe it could be applied to other related contexts.

We begin by recalling the setting and the result of Stannat we are interested in
here, for their links with the theory of population genetics, we refer to the original
article [13].

For d E N*, we consider the simplex

Ad = ~x = (xu ..., ~d) E l~+ : ~x~  1~
*The author would like to thank the hospitality and support of the Instituto Nacional de

Matematica Pura e Aplicada, CNPq, Brasil, where this work was done.
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Where [. ) will always stand for the l1 norm (independentely of the dimension for
instance above ~ = and we designate by the set of functions
which are restrictions to Ad of C~ mappings on R~.

For q = (gi, ...,9d+i) ~ (R~)~B we denote Lq the operator on acting by

V / ~ C-(A,), 6 A,, = ~ ~ 

+~ 
where for 1 ~ z ~ d, 9; symbolizes the partial differentiation with respect to ~.

We also introduce the Borelian probability ~ defined on A~ by

= 

rr M (1)~ 

where r is the usual gamma function;

Vp>0, r(p) = 

It is well-known that this measure is symmetrizing for the operator Lq and thus
we are led to look at the bilinear form ~g defined on C°°(Ad) by

, £q(f, g) = 

= 2/ ~ " 

Then the associated logarithmic Sobolev constant is given by

03B1(q) := inf Eq(f,f) Ent(f2,03BDq)
where as usual the previous entropy is = We have
chosen the inverse definition of that of Stannat, for whom the logarithmic Sobolev
constant is rather because it makes it closer to the notion of spectral gap,
which will also be considered latter on.

Stated as his theorem 2.8 p. 676 of [13], Stannat has proved the following inter-
esting estimate:

V~=(~...,~)6(R~, > a(q) > ~ (2)

with ~ = min{~i,.... 
Our main result in this note can now be formulated as:

Proposition 1.1 There exists an universal constant 0  Ci  +00 such that for all
d ~ N* and = (~i,.... gd+i) 6 (R~)~~ we are assured of

~~ ~ 
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This lower bound can be worse than that of Stannat, for instance if we consider
the case of a fixed dimension d 6 N* and qi = for all 1  z  d+1, with q1 arbitrary
small. Nevertheless, the next result shows that in particular for all fixed 6 > 0, there
exists a constant C~ > 0 such that for all d ~ N* and all q = (?i,.... ~ (R*+)d+1
verifying 6, we have 

"" ~ 

Indeed, if ~, it appears that

ln(|q|~1 q*~e-1) ~ ln(~1 q*~e-1)
= 

thus we can take Ce = c2(1 + |ln(~ A 1)|), using the following statement:

Proposition 1.2 There exists a constant ~2 > 0 such that for all d e N* and all
q = -") we are insured of the upper bound

03B1(q) ~ c2|q| ln[(|q|~1)/(q*~e-1)]
The proof of these results will be based on a study of the spectral gap and the

logarithmic Sobolev constant associated to Laguerre operators and gamma distribu-
tions on R+. This investigation, made in the next two sections, will itself rely on the
Hardy’s inequalities approach to ergodic constants developed by Bobkov and Götze
[2] and can be seen as having its own interest.

At the end of section 5, we will explain why we believe that the logarithmic Sobolev
constant should always be of the order of the upper bound given in proposition 1.2.
Namely, we think that the following is true:

Conjecture 1.3 There exists a constant 03 > 0 such that for all d ~ N* and all
q = (q1,...,qd+1) ~ (R*+)d+1, we are insured of the lower bound

03B1(q) ~ c3|q| ln[(|q|~1)/(q*~e-1)]

At least there is no contradiction with the result of Stannat, since we note that
for all parameters q such that 0 1, we have

|q| ln[(|q|~1)/(q*~e-1)] 
= |q|/(q*~e-1) ln[(|q|)/(q*~e-1)] (q* ~e-1)

~ C4~

with C4 = e-1 minr~2 r / In(r) = 1.

Notice: The lacking estimate to conclude rigorously to the above conjecture
has recently been obtained in [10].
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2 About the spectral gap of Laguerre operators
Our first step consists in giving a complicated proof of a weak version of a classical
result! The advantage of this alternative approach is that it can be extended to treat
the logarithmic Sobolev constant. Furthermore, it introduces natural quantities that
will be useful latter on. Nevertheless in this section, we will only be concerned with
the spectral gap, which is another ergodic constant, sharing some similarities with
the latter one but easier to manipulate. We will also restrict ourself to the simple
one-dimensional situation of Laguerre operators.

More precisely, our setting is the following: for fixed p > 0, we introduce the
Laguerre operator Lp acting on Cp (l~+) (which will denote the set of restrictions to
R+ of C°° functions on R whose derivatives are polynomially bounded) by

v f E x >- ~, ~= + (p - 

Its name comes from the famous Laguerre-Sonin polynomials (Pp,n)n~0, defined by

~ n ~ N, ~ x ~ R+, Pp,n(x) := 1 n!exp(x)x-p+1(exp(-x)xn+p-1)(n)
which are eigenvectors for Lp (cf for instance [14]):

Lp[Pp,n] = -nPp,n

In fact, the gamma distribution pp of parameter p (on R+, remember that =

r(p)-lsp-1 exp(-s) ds) is symmetrizing for Lp and the sequence (-n, 
forms the spectral decomposition of the minimal auto-adjoint extension of this oper-
ator on So we are induced to have a look at the bilinear form ~p defined on
Cp (~+) by

d ~~ g E Cp l~+)~ £p(~~ g) ~- 

and to consider the associated spectral gap

(p) := inf p(f,f) Var(f, P)

where Var(f, - p(f))2] designates the variance of f with respect to p

(one would have noted that Cp (l~+) C L2(~p) and in fact this inclusion is dense).
Then the above considerations show (up to an easy closure argument) that there

is no mystery for this quantity,

d p > 0, ~(p) = 1

What may seem strange indeed, is that our objective here is to recover that
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Proposition 2.1 There exists a finite constant c > 0 such that

d p > o, a(p) > c

Even worse, we shall need several steps to derive this conclusion. We begin by
having interest in the cases where 0  p  1/2.

Lemma 2.2 For all 0  p  1, we have

_ 
t +~ -i

4A(p) > sup i *~- t>o o t 

This estimation is well-known and is a consequence of the Hardy’s inequalities
saying that (cf [11])

’V P > 0, Ap  4Bp

where

Ap := sup 
- ,f (~))2l

> f)

and where Bp is the inverse of the right hand side of the lemma’s bound.
To conclude it is sufficient then to take into account the trivial relation Var( f 
- f (~))2~ for any f E 

Rigorously, the above lemma is verified for every p > 0, except that for p > 1 it
gives no information, since for all t > 0, J~ ds = +00 and thus Bp = +00.
Nevertheless, let us recall that it is possible to insure similar matching lower and
upper bounds for A(p), if the median mp of p is asked to play a role: we have (as an
easy consequence of arguments from [2] and [9])

B~~- ~/ Bp~+ 1 4 ~ ~ 2[Bp,- V 

with

. ym? ymp

Bp,- := sup Bp,- := sup mpts-pexp(s)dsmp0sp-1exp(-s)ds

Bp,+ := sup ts-pexp(s)ds+~sp-1 exp(-s) ds
t>mp mp t.

Indeed, for any p > 0, the quantity is a good estimation (up to a factor
between 1/4 and 2) of the spectral gap a(p) associated to the symmetrization pp of

(on R, jip(ds) = ds);

:= mt 
which in particular is null for p > 1.

Coming back to our objective, we notice that for all 0  p ~ 1/2, we have

Bp ~ B1-2p0 B2p1/2
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due to the Holder inequalities, valid for all t > 0,

t0 s-p exp(s)ds ~ (t0 S-I/2 exp(s) ds ) 2p ( 10 (t exp(s) ds )
1-2p

+~t sp-1 exp(-s)ds ~ (+~t s-1/2exp(-s)ds)2p(+~ts-1exp(-s)ds)1-2p
Thus it is sufficient to study Bo and B1/2 to get a lower bound on A(p)

(namely (Bo V 81~2)-1/4). 
Lemma 2.3 We are assured of Bo  +oo and  +oo.

Proof:

Using the Cauchy-Schwarz inequality, we obtain that for any t > 0,

+oo / +oo +oo
/ J/ exp(-2s) ds s-2 dsS-1 exp(-s) ds::; 

t 
exp(-2s) t s-2ds

_ 
exp(-t)

~ 

2t
and so that

B0 ~ sup 
1 - exp(-t) 2t

As the expression appearing in the rhs is continuous in t > 0 and converges to
zero for small or large t, we can conclude to the first afhrmation.

For the finiteness of we could also study the behaviour of the relevant quan-
tities in the neighbourhood of 0 and +00, but it is sufficient to rewrite Bi/2 as

t y+oo

4 sup exp(s2) ds 
t>o 7o t

and to recognize the Hardy’s bound associated to the spectral gap of the centralized
Gaussian law of variance 1/2, to end up immediately with B1/2  4.

In order to finish the proof of the proposition, we take into account the convolution
semigroup property satisfied by the gamma distributions:

V pl~ p2 > 0, /-LPl * = 

which implies that

n a(p2) (3)

Indeed, by the product property of the spectral gap, we have that for all f E

p1 ® ds2)
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and thus if we consider

f : : (Sn S2) H g(S1 + S2)

with g E C~(IR+), we obtain

and (3) is insured by considering an infimum over all such functions g.
This relation is extended at once into

V n E 1~~, V pi, ..., pn E + ... + pn) > : 1  i  n}

which enables to attain the annouced result, since any positive real number can be
written as a finite sum of elements belonging to ]0,1/2].

Remark 2.4: In quite the same "algebraic" spirit, the conclusion that a(p) > 1/2
for all p E N*/2 can be reached without much effort by using a nice interpretation of
~p in that case; let y be the standard Gaussian law on R, then = R(~y®2p), where
R is the mapping defined by

R : : ~ R+

(z1,...,z2p) ~ z21+...+z22p 2

But recall that the Gaussian law satisfies a Poincaré’s inequality:

Var(f, ~ ~’) ~ (f I ~2 d~
which implies immediately that

d f E f ~ " 
Now let f E Cp (l~+) be given and introduce F = f o R on R2P. This function

belongs to and we compute that for all 1 ~ i  2p,

V z E azF’(z) = 

in particular

~ = 2R( f’(R))2

It remains to integrate this relation with respect to and to consider the

infimum over all such functions f to see that a(p) > 1/2 (remark that we are "far"
from the true constant == 1, a fact showing that if we consider only symmetrical
functions in the infimum defining the spectral gap for the standard Gaussian law, we
will not recover the right value, this is quite normal, as the eigenspace associated to
the spectral gap is generated by the antisymmetrical identity function).
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3 Logarithmic Sobolev constant for gamma distri-
butions

We adapt here the study of the latter section to the logarithmic Sobolev constant,
which is defined by

(p) = inf f p(f,f) Ent(f2, p)

for fixed p > 0.

We first notice that the approach presented in the above remark remains valid
for that constant for the particular values p E N*/2, by using the corresponding
well-known inequality for ~y:

V f E Cp (~)~ Ent( f 2,’Y) ~ 2 (f’)2 d’Y
(the proof of this result given by Gross [5] is itself based on a product/projection

procedure, starting from the symmetric Bernoulli law). Unfortunately, for p E l~+ B
(N*/2), we did not found such a convenient representation of J-tp. In some sense it

is not so strange, as a new phenomenon will appear for the small values of p: the

logarithmic Sobolev constant will no longer be equal to half the spectral gap, as in
the Gaussian situation, nor will these constants be comparable (one would have noted
that for positive half integers p, we already have 1/4 ~ a(p)  a(p)~2 = 1/2).

In fact, using his famous r2 criterion, Bakry [1] has shown that for all p > 1/2,
the identity a(p) = 1/4 holds. This equality in the case p = 1 was discovered by
Korzeniowski and Stroock [7] and was the first example for which the logarithmic
Sobolev constant is not equal to half the spectral gap. Stannat [13] also partially
used the F2 criterion but noted that it does not permit to treat small values of the

parameter q. The same observation can be made for gamma distributions with a small

parameter. This situation is indeed the interesting part of the following estimate,
which is the goal of this section: 

.

Proposition 3.1 There exists a finite constant c > 0 such that

d p > 0, > c/ In(e V (1/p))

This result will be seen latter on to be of the right order.

Proof:

Noting that

~1/2~ +y - [

we see that any real number p > 1 can be written as 2nx with n E N* and x E [1/2,1[.
Thus taking into account the convolution semigroup property satisfied by the gamma
distributions and the fact that the logarithmic Sobolev constant shares the same nice
behavior as the spectral gap under products, we obtain as in the previous section that

inf o’(p) = inf a(p)
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This observation shows that it is sufficient to prove the above proposition for
0  p  1/2. Alternatively, this is also a consequence of the subtler method and
sharper results of Bakry [1], that one would have to take into account if not working
only up to "universal constants" (nevertheless, as already alluded to, the F2 criterion
is not verified for 0  p  1/2, and thus won’t help us to prove the conjecture 1.3, see
the end of section 5).

Let a(p) be the logarithmic Sobolev constant associated to the symmetrized prob-
ability p introduced in the latter section, namely

(p) := inf |s|(f’(s))2p(ds) Ent(f2,p)

If in the above definition we consider only symmetric functions, we recover a(p),
so we are assured of the bound a(p) > S(p). But using the fact that 0 is the median
of pp, theorem 5.3 of [2] tells us that

Cp 1/720 - a(p)  75C?-’ 1

with

t +oo

Cp = sup s-p exp(s) ds sp-1 exp(-s) ds [
t>o 7o t

As the referee mentioned it in his report, theorem 5.3 of [2] is only stated for
constant diffusion coefficient, so we should first consider the change of variable s - s2
to come back to this situation. But we can notice that the proof of Bobkov and Gotze
is also valid with a Dirichlet form of the general type f ( f’)2 dm where m is any non-
negative Borel measure on R, as in the case of evaluation of Poincaré’s constants, on
which is based the approach for the logarithmic Sobolev constant.

In order to evaluate this quantity, we note that an elementary function analysis
shows that for 0  p  1 fixed, we have (p 2014 1) -s for any s > 0, thus we
obtain for t > 0,

ln(2r(p)) - ln (+~t sp-1 exp(-s) ds
 exp(-2s) ds
= ln(2r(p)) - In (exp(-2t)/2)
= ln(41,(p)) + 2t

and then it appears that

Cp  ln(4r(p))Bp + 2Dp

with

c /*+00

Dp = sup t 
t>o 7o t
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But in the previous section we have shown that Bp  +00 and we have
that for 0  p  1/2, 

r(p) = p-’ 1 sup r(q) = r(l)p-l = p-’
1q3/2

(the last but one inequality comes from the fact that the function r is convex and
that r(l) = r(2) = 1).

These facts admit as a consequence that in order to obtain the estimate given in
the above proposition it is sufficient for instance to prove that

sup Dp  +00
0p_1/2

For that purpose, we take into account the Holder inequality already considered
in the latter section in conjunction with the observation that the additional factor t
does not depend on p, which reduces the problem to the finiteness of Do and Di/2.

For the bound Di/2  +00, we note that via an obvious change of variable, we
can write,

D1/2 = 4supt2texp(s2)ds+~exp(-s2) ds

~ 4 sup|ln(2 03C0 +~texp(-s2)ds)| t0 exp(s2)ds +~texp(-s2)ds
~ 4 sup t0exp(s2) ds

+~t

exp( -s2)ds |ln (
+~t exp (- s2) ds 03C0)|

and we recognize the last rhs as the expression appearing in the Hardy’s caracteriza-
tion of the logarithmic Sobolev inequality for the centralized Gaussian law of variance
1/2, which enables us to conclude to the finiteness of Di/2.

To be convinced of that of Do, instead of the Cauchy-Schwarz inequality used at
the beginning of the proof of lemma 2.3, we rather have to resort to the trivial bound

+~ts-1exp(-s)ds ~ t-1+~t exp(-s) ds = t-1 exp(-t)

which permits to see that

Do  =1 ,

[]

4 On product spaces
Our next step in the proof of proposition 1.1 uplifts the problem to a larger but
nicer state space, a mechanism which has already be seen to be useful in the previous
sections and which is quite classical (even in discrete settings, cf for instance [3]).

The main ingredient is a traditional interpretation of Vq, for q = (ql, ..., qd+1) E
which is assumed to be fixed from now on.
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Let be the Borelian product probability 0 fLq2 ® ... ~ ® on (recall
that for p > 0, pp designate the gamma distribution of parameter p on IR+).

We introduce the mapping

(S, T) : : I~+ ~ --~ ~d x IE~+
y ~ (s(y)~ 

with for all y = (yl, ... , , yd+1) E 

) = yi + ... + yd+1
= 

(the classical convention 0 . (+oo) = 0 is enforced for y = 0).
Then it is well-known (cf for instance [4]) that S and T are independent under 

that = fLlql and that = vq.
Next we consider the bilinear form Eq defined on Cp (I~+ ) by

~q(f ~ 9) - / E yiaif (y)ai9(y) 
" 

and the associated logarithmic Sobolev constant

(q) = inf q(f,f) Ent(f2, g) (4)

(these notions are just multidimensional versions of those defined in the two previous
sections). 

--

The advantage of and £q is that the latter quantity is easily computed due to
their product structures; we obtain

a(q) - min (qi)
and that observation reduces the problem to one-dimensional estimations.

In particular, the previous section shows that there exists a constant c > 0 such
that for any q = (ql, ..., qd+i) E (~+)d+l, we have

a(P) >_ max(l, ..., ln(1/qd+i)) 
(~)

In order to make a link with our quantity of interest a(q), we begin by working
with the underlying diffusive carrés du champ: first to any Cl function f on the
simplex 6d, we associate the continuous mapping f) defined by

’d x = ..., xd) E Od, ’Yq(f, f )(~) ~ - 1 ~ - 

Next, for any couple of C1 functions F, G : : B {0} --t R, we introduce the
continuous mapping

rq(F, G) I B {~} 3 ~/ = (yl, ... ~ 

In all what follows, we will mainly consider functions of the type F := Fi F2 , where

Fl := q o Sand F2 := f o T, with f E and 9 E 
For instance for our first result of decomposition:
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Lemma 4.1 With the previous notations, tue have

= 

Proof:

As a general result for bilinear mappings which are acting by derivation on each
of its arguments, we have a priori that

= 

but in our particular situation, we note that the last term is null: using that for all
~=(~,...,~)~(~)~B{0},

~ 1 ~ i ~ d, ~iF2(y) = 1 S(y)~if(T(y)) - E 

yj S2(y)~jf(T(y))
and that

~iF1 = 

we compute that

r,(F,,F2) = ~) ~(r~/(r)+~+iF2)+~i~iF20393q(F1,F2) = g’(S)03A3(Ti~if(T)+yi~d+1F2)+yd+1~d+1F2
= ~) ~~/(T)+~+iF2= g’(S)[03A3Ti~if(T)+S~d+1F2 ]
= 0

(with the obvious notation = for 1  z  ~ and ~/ ~ (R+)~ B {0}).
Furthermore, it appears at once that

= 5(~(~))’
= 

and we compute that for all / 6 (R+)~" B {0},

r,(F2,F2)(/)
= yi (~if(T(y) S(y) + + 

= yi S2(y)(~if(T(y)))2 + 2 ~if(T(y))~d+1F(y)+S(y)(~d+1F(y))2
but the intermediate term is just

2 ~ = -2~(~)(~+iF(!/))’
i~t$ 
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and so we end up with the following relation between our carres du champs of interest

= 1 STi(~if(T))2 - 

~ 

S

which enables us to conclude.

[]

By definition, for any functions f E and F E C1(Rd+1+ B {0}), we have
respectively

Eg(f,f) = 

F) = F) dpq

(there the domains of definition have been extended, note in particular that the last
integral can now be infinite) so remembering the properties of Sand T, we obtain as
a direct consequence of the above lemma and with its notations,

~~9~ l9, + f

where s denotes the identity on I~+.
We also mention the following well-known identities of decomposition for the vari-

ance and entropy of independent variables:

Var(FIF2’ J-Lq) = 
= + 

= Vq) + Var(9, 

and

= 

= vq) + |q|)

To finish this section, let us consider, always for fixed q = (ql, ..., qd+1 ) E 
the spectral gap A(q) corresponding to Vq and ~q, which is defined as the quantity

03BB(q) := inf ~q(f,f) Var(f,vq)

It follows from the complete spectral decomposition of the minimal auto-adjoint
extension of the generator Lq, which was obtained by Shimakura [12] (maybe there is
a hidden relation with the Laguerre operators), that A(?) = ~q~/2. Nevertheless, we

will show how the above manipulations enable to recover this equality. To do so, we
will take into account the information that A(p) = 1 for all p > 0 (ie we need more
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than just the rough proposition 2.1). Once again, due to the product structures, we
deduce from these identities that À(q) = = 1~ where 

~

a(q) . := inf q(F,F) Var(F, q)

Our first task is to see that

Proposition 4.2 For any q = (ql, ..., E we have

a(q) ~ 

Proof:

Let a generical f E be given such that = 0. With the previous
notations, we consider Fi = f o T and F2 = S, so that the relation = 1 implies
in particular that

an inequality which can be rewritten as

+ f)

Using now that

_ 

+ 1) 
- 

1
~ 

+ 2) ~q) + 1

and that Var( f, = it follows that 
,

vq) ) ~ 2~Q(f f) )

As this inequality is indeed satisfied for all the announced bound is

proved.
[]

To prove an upper bound for an ergodic constant is often easier than a lower

bound, since it is sufficient to choose a convenient test function. Here if we consider

the first coordinate,

fo : : x1 ~ IR

we compute that

- 1 J £ - 

~ 

= 

= 
q1(|q|-q1) 2|q|(|q|+1)
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as can be seen by using the form of the renormalization factor of 03BDq in (1) (which itself
is directly deduced from that of 

On the other hand, it appears similarly that 

Var(f0,03BDq) = q1(q1+1) |q|(|q|+1) - (q1 |q|)2

- 

so we end up with  and finally = 

5 Estimates for the logarithmic Sobolev constant
Here we will finally take advantage of the previous sections to prove the bounds
announced in the introduction.

In order to show the proposition 1.1, let us introduce a new quantity for q ~
.

03B1(q) := 
inf ~q(f,f) Ent(f2,03BDq)

Clearly we have 03B1(q) ~ a(q) and taking into account an inequality due to Deuschel
(cf [6]), saying that

 

it appears that up to universal factors, a(q) is of the same order as A o;(g) =
A d(g). Thus we are led to evaluate the latter constant, and the next result

enables us to conclude the validity of the estimate presented in the proposition 1.1.

Proposition 5.1 There exists a constant Co > 0 such that for = ..., qd+1) ~
, we are assured of

03B1(q) ~ c0 
|q| max{ 1, ln( 1 /q1), ..., ln( 1/qd+ 1 )}

Proof:

Let f ~ C1(ðd) be such that = 0. Coming back to the notations of section
4, we consider F = F1F2 with Fi = 5 and F2 = f o T. Then we obtain

~ 

= + /)]

= ~[~(~+2~(/,/)]
~ |q|(s) (q) 

[1 03BB(q) 
+ J £q(f, f)

= 2 |q|(s) |q|+1~q(f,f)- 

k! ~~~



216

and by consequence

So the expected result follows at once from (5).

Remark 5.2: the a priori natural embedding Cl(6d) ~ f ~--> F := f o T E
(ie with Fl = 1) does not give any information for Iql  1, because then

we have +00.

We now come to the second objective of this section: as usual, an estimation as
that of proposition 1.2 will mainly be the consequence of an appropriate choice of test
function. We will consider two cases, corresponding respectively to q* = min(qi : i 1 ~
z  d) or q* = qd+ 1. We begin by treating the first situation, where by symmetry, we
can and will assume that indeed q* = ql. .

Lemma 5.3 Under the above setting, there exists a constant a > 0, such that we
have 

Eg(foa fo) ~ lql
1)I(~~ ~ e-1)) - a]+

where we recall that fo is the first coordinate mapping

f0 1 x = ..., ~d) H xl

Proof:

We have already computed at the end of the previous section that

~q(f0,f0) = q1(|q|-q1) 2|q|(|q|+1)

Thus we only need to evaluate the entropy For that, we introduce

Fo := s f o o T : 1 ~ y = (yl, ..., yd+1) H yl, since we have

~52, 
_ 

- 

Ent(Fo , ) - ~g)I~g(s2)
~ 

~9(S2)
_ 

~ 

~S2)

It is quite clear that for the denominator, we have

|q|(s2) = 0393(|q|+2) 0393(|q|) = |q|( |q| + 1)
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and in the same manner we obtain /~(~) = ?i(?i + 1).
For the first appearing entropy; we have

q1) = / 5’ q1 (ds) - L’ q1(ds) In f [s2 q1 (ds)]
= 

= ~~~’.~~-~~~~
= 91 (?i + 1) (2(In[r(2 + gi)]/ - + 1)])

This computation is also valid for replacing ~i by ~, and so we get

and

~q(f0,f0) Ent(f20,03BDq) = |q|-q1 q1+1 (’ [(ln[0393(2+ q1)])’ - (ln[0393(2+ |q|)])’] +1" [|q|(|q|+1) q1(q1+1)])-1
~ |q| (2 [(ln[r(2 + 91)])’ - (ln[r(2 + )q))])1 + In [|q|(|q|+1) q1(q1+1)])-1

This leads us to look for a lower bound for the expression between the big paren-
theses, which we will designate by ~4(~,~i). In view of the previous manipulations,
this quantity is clearly nonnegative, so to obtain the announced result, we only need
to find a constant a > 0 such that for all parameters g as specified above, we are
assured of

A( |q|, q1) > In (|q|~1 q1~e-1 )
- a (6)

To do so, we distinguish two situations.
 The simplest one is when 0  ~  1: using Holders inequalities, it is quite

easy to be convinced that the mapping

ln(r(p))

is convex, and taking into account that F(l) = F(2) = 1, it follows that ln(r(p)/ is
increasing in p > 2. We deduce from that observation that we can take in (6)

~ := 2[ln(r(3)/-ln(r(2))1

since due to the a priori bound 0  !~!/2, we are insured on the one hand that
~i  1 and on the other hand that (~ + !)/(?! + 1) ~ 1.

w The other cases correspond to ~ > 1: coming back to previous computa-
tions, we have

- 2(ln[r(2+~)]/+InM~!+l)] = -~~
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Now, with q = (1, 1) ~ (R’j.)~ and obvious notations, we also have
= 

= 

= ~ 
~ 1(s2) |q|(s2)Ent(s2, |q|)

Thus we obtain that

> -~~+2(ln[r(2+9i)])’-In[~(~+l)]
We furthermore note that the sum of the last two terms, reinterpreted once more

as is positive and as the same is true for ln[r(2 + gi)]/, we can
bound it below by

~ 

~ 
> 

> 

Finally, it appears that (6) is verified in this situation with

~ ~ In(2) + 1 ~ 21n(r(3)/+l

and more generally note that this choice of a is good for all cases.
.

Let us now consider the remaining situation, where the minimum ~ is attained in
~+i. A convenient choice for the test function is then

/o~Ad3a:=(~i,...,~d) ~ l-~i----~d

because the associated natural uplift Fo := Sf0 o T is immediately seen to be the
coordinate mapping 3 y = (?/i,...,~d+i) ~ 2/d+i. Thus the proof of the above
lemma shows (indeed, we have just to replace ~i by that

~~) ~ _________9_________
[ln((~Al)/(~+iAe-i))-~]+

As a conclusion of these considerations, we have that for any q 6 

03B1(q) ~ 
|q| [ln((|q|~1)/(q*~e-1))-a]+
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and by consequence,

03B1(q) ~ 2|q| [ln((|q|~1)/(q*~e-1))

as soon as 1)/(q* A e-1) ~ exp(2a).
But as a general bound (cf for instance [3]), the logarithmic Sobolev constant is

always smaller than half the spectral gap, so if 1)/(~ A  exp(2a) , we have

~ 
~ 

4 

and the proposition 1.2 follows.

Remark 5.4: at least for 1, the estimate of proposition 1.1 is of the right
order and it is quite straightforward to deduce from this, by a contradiction argument,
that the same has to be true for the bound of proposition 3.1.

To end up this section, let us present a clue leading us to think that a( q) should al-
ways be of the order of its upper bound of proposition 1.2. To back up this affirmation,
we make, for instance, the conjecture that

 + oo (7)
p-o+ ~p(~, s)

This relation is just saying that the identity mapping is almost a minimizer in the
definition of the logarithmic Sobolev constant for the one-dimensional gamma distri-
bution, asymptotically for small values of the underlying parameter (remember that
this mapping is a true minimizer for the corresponding spectral gap). In particular,
via above computations showing that

limsup  +00
p-.o+ ~p(~, s)

the condition (7) implies that

 + oo

p-o+

(we also have liminfp-,o+ > 2014oo, in particular, ln(l/p) for
p > 0 small). Note that this result is out of reach by Hardy’s inequalities techniques,
which only give estimates up to universal factors.

We take into account this supplementary information to deduce from (7) that there
exists a constant ~3 > 0 independent of the dimension d G N* such that

~.(R~-..M ~ 

Indeed, in view of what we have already done, it is sufficient to show this bound
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But then let A’ ~ 0 be such that for all 0  p ~ we are assured of

 In(l/p)+A-

Coming back to the beginning of the proof of proposition 5.1, we rather write
(with its notations),

= 

~ 

- [%’’-~"~’-...’]~’~~.~)
~ + 2K] + + f)
~ + 2K] f) + + f)
 + 

and the announced result follows quite easily (remember that = 
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