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Stochastic differential equations
driven by symmetric stable processes

Richard F. Bass1

Department of Mathematics

University of Connecticut
Storrs, CT 06269

U.S.A.

1. Introduction.

Stochastic differential equations of pure jump type are becoming increasingly
important. To mention just one example, in financial mathematics many times one
wants to model security prices by jump processes. Yet the basic properties of such
stochastic differential equations (SDEs) are still not well understood.

In one dimension the SDE for a continuous diffusion without drift can be
written

dXt dWt, ( 1.1 )
where Wt is a one dimensional Brownian motion. It is known that pathwise unique-
ness holds for (1.1) when (1 is bounded and is Holder continuous of order greater
than or equal to 2; see, e.g., [B2]. This theorem is not optimal, but is nearly so.

The analogue of (1.1) for pure jump processes replaces the Brownian motion
by a compensated Poisson point process. If dt) is a Poisson point process with
mean measure v(dz) dt, one looks at solutions to

dXt = ~ G(Xt- z) dt) - v(dz) dt), (1.2)

where Xt- denotes the left hand limit of X at time t. (This stochastic integral is
defined below.) One may think of the equation as saying that whenever /~ assigns
mass one to a point z at time t, then Xt jumps an amount G(Xt_, z). This for-
mulation is due to Skorokhod [Sk], who also proved pathwise uniqueness under a
Lipschitz-like condition on G. The reason that one goes to a Poisson point process
is that if one replaces the Brownian motion by some other Levy process, one does
not get as large a class of pure jump processes as one would like.

1 Research partially supported by NSF Grant DMS 9988496.
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At the present time the SDE (1.2) appears to be too general an equation to
allow us to state satisfying uniqueness results, so in this paper we consider a special
case. Let Xt be a one-dimensional symmetric stable process of index a E (0, 2).
Recall that for a E (0,1) the paths of Xt are of bounded variation, while for a E ~1, 2)
they are of unbounded variation. We consider the SDE

dYt = F(Yt_)dXt, Yo = xo, (1.3)

where the stochastic integral is the usual one for semimartingales (see [Me]). If in

(1.2) we take v(dz) = and G(x, z) = F(x)z, we have the special case (1.3).

We have two main results. Our first is the analogue of the Yamada-Watanabe
condition for diffusions [YW].
Theorem 1.1. Suppose a E (1, 2), suppose F is bounded and continuous, and

suppose p is a nondecreasing continuous function on [0, oo) with p(0) = 0 and

IF(x) - F(y) _ p(lx - for all x, y E R. If

0+ 1 03C1(x)03B1 dx = ~, (1.4)

then the solution to the SDE (1.3) is pathwise unique.

We also show that the integral condition is sharp.

Our second main result covers the case a E (0,1).

Theorem 1.2. Suppose a E (0,1), , F is continuous, and F is positive, bounded

above, and bounded below away from 0. Then the solution to the SDE (1.3) is

pathwise unique.

What seems quite intriguing is that as a ,~ 1, the requirement for unique-
ness approaches that of F being almost Lipschitz continuous. Then for a  1 the

uniqueness requirement suddenly becomes only that F be continuous.

It is possible that the explanation lies in the hypothesis in Theorem 1.2

that F be bounded away from 0. It is not clear, though, that this is necessarily
correct. In [Bar] Barlow showed that for the diffusion case, if ,Q  2, there could be
nonuniqueness for (1.1) even when one requires that u be Holder continuous of order

/3, positive, and bounded below away from 0. If Barlow’s example has an analogue
in the a E (1, 2) situation, the difference between Theorems 1.1 and 1.2 becomes

even more puzzling.

Regarding weak uniqueness for (1.2), there are results for processes that

are essentially a stable process plus a perturbation term; see [Ko] and the references

therein. Hoh [H] covers more general operators provided the coefficients are smooth.
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The most general theorem is [Bl], which translates into requiring Dini continuity of
the function G in the x variable.

For equations of the form (1.3) there are a number of interesting results con-
cerning weak existence and uniqueness; see [PZ] and [Z]. These should be compared
with the results of Engelbert and Schmidt [ES] for the diffusion case.

We use AXt to denote the jump of Xt at time t. We normalize our symmet-
ric stable processes so that is a Poisson process with parameter

_

We briefly summarize the definition of stochastic integrals with respect to
compensated Poisson point processes. For further information on stochastic inte-

gration and stochastic calculus for processes with jumps, see [Me].
Let (0, .F, P) be a probability space and let B be the Borel u-field on R. Let

v(dy) be a u-finite measure on (R, B) with infinite mass that has no atoms. A Poisson
point process  with compensator v is a measurable mapping  : B x [0, oo) x 03A9 ~
{o,1, 2, ...} such that (1) for each A E B with v(A)  oo the process x [0, t]) is
a Poisson process with parameter v(A); and (2) if AI, ..., An are disjoint sets in B
with v(A;)  oo for each i, then x ~0, tJ) are independent processes.

If H(s, z)(w) where v(A)  oo and F is bounded and

Fa- measurable, define

t0 H(s,z)( (dz,ds) - 03BD(dz)ds)

= [ (A  [0,b^ t]) - v(A)(b ^ t) - [ (A  [0, a ̂  t]) - n(A)(a ^ t)].

We extend this definition by linearity and LZ limits to the set of H such that

fo f H(s, z)2v(dz)ds  oo and fA H(s, z)v(dz) is predictable whenever v(A)  oo.

One can check (provided some integrability conditions are satisfied) that the
above definition is consistent with the usual definition of the stochastic integral

t0 KsdXs when Xs is a local martingale that can itself be written in terms of
a Poisson point process. In this paper our integrands are locally bounded; the

argument in this case is particularly easy.
Acknowledgment. I would like to thank the referee, who was extremely helpful
and who corrected a number of errors in an earlier version of the paper.

2. The case a E (1, 2).
Suppose Xt is a symmetric stable process of index a E (1, 2). We define the

Poisson point process by

x [0, t~) _ ~ 
st
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the number of times before time t that Xt has jumps whose size lies in the set A.
We define the compensating measure v by

v(A) = E (A  [0, 1]) = A 1 |x|1+03B1 dx.
Set

f(x) = [f (x + w) - f (x) - |w|-1-03B1dw (2.1)

for C2 functions f. . There is convergence of the integral for large w since a > 1.
There is convergence for small w by using Taylor’s theorem and the fact that a  2.

Of course, for C~ functions ,C coincides with the infinitesimal generator of X; see

[St]. .

Proposition 2.1. Suppose a E (1, 2), f is in C2 with bounded first and second
derivatives, and

Zt = t0 HsdXs ,

Jo

where Ht is a bounded predictable process. Then

f(Zt) = f(Z0) + Mt + t0|Hs|03B1Lf(Zs-)ds, (2.2)

where Mt is a martingale.

Proof. Let Xr = and Yt = Xt - Xt . Then Xt is a Levy
process with symmetric Levy measure which is equal to v on [-n, n] and 0 outside
this interval. Hence Xr is a square integrable martingale (see [Sa], Lemmas 25.6 and
25.7), and so t0 HsdXns is also a square integrable martingale since H is bounded.
On the other hand

E|t0 HsdYns ~ ~H~~E 03A3|0394Xs|1(|0394Xs|>n)  ~
~o st

because a E (1, 2). The right hand side tends to 0 as n - oo by dominated

convergence. Therefore Zt is the L1 limit of the square integrable martingales
J~ H8 and it follows that Zt is a martingale.

Write K(s, y) for [f(Zs- + Hsy) - f(Zs-) - f’(Ze_)Hey]. Note that 
Hs0394Xs. Note also that y)| is bounded by a constant times (lyIAy2). If f E C2
with bounded first and second derivatives, we have by Ito’s formula that

f (zt) = f(Zo) + / + - f(Ze-) - 
o 8t

= f(Z0) + t0 f’(Zs-)dZs + t0  K(s,y) (dy, ds)

= f(Z0) + Mt + t0  K(s, y)v(dy)ds,
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where

Mt = t0 f’(Zs-)dZs + t0  K(s,y)( (dy,ds) - v(dy)ds).

The first term on the right is a martingale by the argument of the first paragraph
of this proof. For each m we have then is bounded, and
so for each m

Wmt = t0 |y|~m K(s,y)( (dy,ds)- v(dy)ds)

is a martingale. Since Wkt - Wmt is a martingale for each k, then

E t0 m|y|~k|K(s,y)|( (dy, ds) + 03BD(dy)ds) ~ c1 t0 m|y|~k |y|03BD(dy)ds
~ c2m1-03B1 , 

where ci and c2 are positive finite constants not depending on m or k. Letting
k --~ oo, we see that

E t0 m|y||K(s,y)|( (dy,ds) + v(dy)ds) ~ c2m1-03B1 .

Therefore Mt is the limit in L1 of the martingales t0 f(Zs-)dZs + Wmt, and hence

is itself a martingale.
We make the change of variable w = Hsy. Since y ~ Hsy is monotone if
0 we have that the integral with respect to v(dy) is

[f(Zx- + Hsy)- f(Zs-) -f’(Zs-)Hsy] dy |y|1+03B1
= + w) - f (Zs-) - 

= 

if 0. This equality clearly also holds when Hs = 0. We therefore arrive at

(2.2). a

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let Y1 and Y~ be any two solutions to (1.3), let Zt =

Ytl - Yt2, and let Ht = Then Zt = fo HsdXs .
Let an be numbers decreasing to 0 so that = n. For each n

let h~ be a nonnegative C2 function with support in (an+1, an] whose integral is 1,
and with h~(x)  2/(np(x)a). This is possible since =1.

Fix A > 0, let = ~0 e-03BBtpt(x, 0)dt, where pt (x, y) is the transition

density for Xt, and let Ga f (x) = f f (y)ga(x - y)dy. It is well known (see, e.g.,
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[Ke]) that ga (x) is bounded, and is continuous in x. Furthermore, ga (x)  ga (0) if
0. Let = Gahn(x). By interchanging differentiation and integration and

using translation invariance, f n is in C2 since hn is C2.
Define At = fo By Ito’s product formula and Proposition 2.1, ,

Ee-03BBAtfn(Zt)-fn(0)
= E t0 e-03BBAsd[fn(Zs)]-E t0 e-03BBAs03BB|Hs|03B1fn(Zs-)ds

= E t0 e-03BBAs|Hs|03B1Lfn(Zs-)ds-E t0 e-03BBAs03BB|Hs|03B1fn(Zs-)ds.
yo ~o

Since = G03BBhn = 03BBG03BBhn - hn = 03BBfn - hn, we have
fn(0) - 

E e-03BBAt fn(Zt) = E t0 e-03BBAs|Hs|03B1hn(Zs-)ds.
Note |Hs| ~ 03C1(|Zs-|), so using our bound for hn, the right hand side is less than

2t/n in absolute value, which tends to 0 as n ~ ~. The measures hn(y)dy all have
mass 1 and they tend weakly to point mass at 0. Since ga is continuous in x, then

fn (x) ~ ga (x) as n ~ ~. We conclude

ga (0) - E = 0.

We noted above that  gx(0) if x i= 0, while clearly At  oo since F is

bounded. We deduce P(Zt = 0) == 1. This holds for each t, and we conclude that Z
is identically 0. 0

Remark 2.2. The above proof breaks down for a = 1 since ga is no longer a

bounded function.

Remark 2.3. The integral condition fo+ = oo in Theorem 1.1 is sharp
in the sense that if the integral in (1.4) is finite, then there exists an F for which

pathwise uniqueness does not hold. Since the argument that shows this is similar to

that in the diffusion case (see [ES]), we only sketch the proof. Let Vt be a symmetric
stable process of index a. Suppose  oo. Without loss of generality
we may suppose p is bounded. Define F(x) = From the fact that ga is

bounded, we see that

E 
~0 

e-03BBs 
1 F(Vs)03B1 

ds  ~.

So if At then At is finite. Since F is bounded, then limt~~ At = o0

a.s. If we let Tt be the inverse of At and let Wt = VTt, after some stochastic calculus

we deduce that Wt solves an equation of the form

dWt = F(Wt_)dXt, (2.3)
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where Xt is a symmetric stable process of index a. The process Wt is not identically
zero, yet the identically 0 process also solves (2.3). Hence the solution to (2.3) is
not unique in law. It cannot therefore be pathwise unique by [JM], which is the
analogue in the jump case to the well known result of [YW] which says that pathwise
uniqueness implies weak uniqueness.

Remark 2.4. The example in Remark 2.3 is one where weak uniqueness fails. The
question of what are the best sufficient conditions for pathwise uniqueness when one
also has weak uniqueness is an interesting open problem.

Remark 2.5. It would be interesting to find the analogue of Theorem 1.1 for the
SDE (1.2).

3. The case a E (0,1).
Our first goal is to construct a solution to (1.3) that satisfies a certain mea-

surability condition. Let Y be a separable metric space and K(Y) the space of
compact subsets of Y. It is known (see, e.g., [SV], Section 12.1) that K(Y) is a
separable metric space with a distance function defined by

d(C1,C2) = inf{~ > 0 : C1 ~ C~2, C2 ~ C~1},

where C~ denotes the e-neighborhood of C. The following proposition is from [BH].

Proposition 3.1. Let X be a measurable space. Suppose that : X --~ Y

is a sequence of measurable maps such that for each x E X, the set {~n(x)} is

nonempty and precompact. Let C(x) be the set of accumulation points of the
sequence {~n(~)}’ Then there is a measurable map 7/J : X -~ Y such that ~(a?) E
C(x) for every x E X.

Proof. We first wish to show that the map C : ; X ~ K(Y) given C(x)
is measurable. It is clear that C(x) is compact for every x. We will use K(A) to
denote the collection of compact subsets of A C Y. It is known that K(F) is closed
for each closed F C Y and the class {K(F) : F closed in Y} generates the Borel
(7-field of K (Y) . Hence it is enough to show that for each closed F C Y, the set

= {x EX: C(x) C F}

is measurable in X.

Let GN be the (l/N)-neighborhood of F. Then GN is open and GN 4. F. It
is easy to verify that K (F) and

oo m oo

= n U 
N=1 n=1 k=n



309

Note that for the above relation to hold we need the condition that ~~n (x) } is

precompact for each x E X. The set {x E X : ~k(x) E GN} is measurable because
GN is open and ~~ is a measurable map. Hence C-1[K(F)~ is measurable.

We finish the proof by applying [SV], Theorem 12.1.10. D

Let = u(Xs : s ~ t) and let Ft be the completion of It is well known

that the Ft are right continuous. Recall that a strong solution to (1.3) is one where
It is adapted to the filtration 

Proposition 3.2. Suppose a E (0,1) and F is bounded and continuous. Then

there exists a strong solution to (1.3).

Proof. Let

X? 
8t

Then X’~ has only finitely many jumps in finite time. Clearly Xn is adapted to the
filtration {.~t}. Let Yn be the solution to

dYnt = F(Ynt-)dXnt, Yn0 = x0. (3.1)

Then Yn is also adapted to the filtration ~~’t}; in fact, it is clear that the solution
to (3.1) is unique and is determined by the fact that Yn stays constant until the
time t of a jump of Xn, at which point Yn jumps 

Fix K. We use D[0, K] to denote the space of functions that are right con-
tinuous with left limits on [0, K~; see [Bi] for further information on D[O, K~. The
paths of Xt are of bounded variation, a.s. So except for a null set, given 6- there

exists 6 (depending on w) such that

sK

Hence for each n,

L (3.2)
sK

Since Xt(w) only has finitely many jumps of size larger than 8 in absolute value by
time K, there exists a subsequence n~ such that

Zt’ (w) = Yo + ~ (w)1{IoXa(W)I>a}
st

converges uniformly and hence in K~. Note (w) - Zt’ (w) ~  by

(3.2). For êm = 1/m, m = 1, 2, ..., we use the above argument to select a subse-

quence depending on êm such that in addition the subsequence for êm+l is contained
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in the one for Using a standard diagonalization argument, there exists a subse-
quence of Yt’~ (w) that converges in K~. It follows that is precompact
in D[0, K] for each K.

If Yt is any subsequential limit point, then Yt has a jump only when Xt
does and does not otherwise move. If X has a jump at time t, then Yt jumps

Since F is continuous, we conclude that Yt jumps Hence
Yt = xo + Since Xt is of bounded variation, this is the same as

[Me], and therefore Yt is a solution to (1.3).
Let be an enumeration of the nonnegative rationals and let X = ~.

Let Yi = D(~0, with metric dj ; under dy the space y~ is a separable metric space.
Set y = n:1 ya. If v’) = 03A3~i=1 2-’ arctan(dyi(03C9i, 03C9’i)) for a7 = 03C92,...),
then dy makes y into a separable metric space. Let 9 be the a-field on X generated
by the collection of sets of the form ~4i x ... x Ak, where A; E 3iq; for i == 1, ... , k
and k > 1. For each n define Y" : X --> y by letting the ith coordinate of be
the function t -~ It is easy to check that the mapping Yn is measurable
with respect to the ~-field Q. Note Y~‘ has the following two properties:

(1) If qi  qj and c~i = then the ith and the jth coordinates of are

functions that agree for t  q~.

(2) The value of the ith coordinate of depends only on 03C9i and does not
depend on Wj for j ~ i.
In view of the definition of the metric on y, and the fact that is

precompact in D(~0, qi~), for almost every w, every subsequence of has a

convergent subsequence. Here "almost every" means with respect to the product
measure on X. Therefore the sequence is precompact for almost every

Let denote the set of subsequential limit points. We see, therefore, that
C(w) is nonempty for almost every (J.

The set C(w) is compact. Moreover, every element of C(w) will satisfy prop-
erties (1) and (2) above. By Proposition 3.1 we can select E C((J) such that
the map 03C9 ~ Y(w) is 9 measurable. For w E (2 and t  q;, let fiJ be a point not
in the null set for which Wi = w and define to be the ith coordinate of Y(w)
evaluated at time t. In view of (1), the definition of Yt does not depend on i. Sup-
pose t  qi. The mapping 03C9 ~ Y (w) is measurable so the same is true for its itn
coordinate Yi (~) . It follows that Yt (w) is measurable with respect to Since Yt
is measurable with respect to for every rational qi > t, it follows that for every
t, Yt is measurable with respect to the filtration ~~’t}, D

Saying the solution to (1.3) is unique in law (or that weak uniqueness holds)
means that if dYit = F(Yit-)dXit for i = 1, 2, with Y10 = Y20 = x0 and both X1t, X2t
are symmetric stable processes of index a, then Y1 and Y2 have the same law.
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Proposition 3.3. Suppose F satisfies the hypotheses of Theorem 1.2. Then the

solution to (1.3) is unique in law.

Proof. The proof of this is similar to the diffusion case and we only sketch the

argument. Let At = let Tt be the inverse to At, and let Zt = YTt.
Since F is bounded, limt~~ At = ~ a.s. Some easy stochastic calculus shows that

8t 
A Y

is a martingale for every set A C R that is compact and a positive distance from
0. Also, for such A this process is a purely discontinuous martingale. This implies
that Zt is a symmetric stable process of index a. Moreover some more stochastic
calculus shows that if Bt = fo and ~yt is the inverse of Bt, then = Y. .

Suppose dYti = F(Yt )dXt, i =1, 2, where X 1 and X2 are symmetric stable
processes of index a and define Zi in terms of V as above. Then the law of Z~ and

Z2, both being symmetric stable processes, are the same. Since Y1 can be obtained
from Z~ in the exact same way as Y2 is obtained from Z2, then the laws of Y1 and
Y2 are the same. 0

Proof of Theorem 1.2. (cf. [E].) Let Xt be a symmetric stable process of index
a. There exists a strong solution Yt to (1.3). Therefore there exists a measurable
map H ; X -~ Y. Suppose Yt is another solution. By Proposition 3.3 the laws of
Y and Y’ are the same. Since Xt = and Xt = 

then the joint laws of (X, Y) and (X, Y’) are the same. Since Y = H(X), then
Y’ = H(X ). But then Y = H(X) = Y’. o

Remark 3.4. Lest the reader think that every SDE driven by a symmetric stable

process of index a E (0,1) is pathwise unique, we mention that this is not the

case. Let /3 E (0,1), let Yt be a symmetric stable process of index a, and let

At = fo From known facts about the Green function of stable processes,

At will be finite a.s. if 03B2 is small enough. On the other hand, clearly j4i > 0 a.s.,
and by a simple scaling argument At is equal in law to . For any M,

M) = P(A1  ~ 0

as t -~ oo, provided /3 is smaller than a. We conclude At - oo a.s. as t --~ oo. We

can then proceed as in Remark 2.3 to see that the SDE

dWt = 
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is not unique in law, hence not pathwise unique.
It would be extremely interesting to know if the example in [Bar] has an

analogue in the stable case.
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