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On filtrations related to purely discontinuous
martingales

By Jan Hannig
Colorado State University*

Abstract

General martingale theory shows that every martingale can be decomposed
into continuous and purely discontinuous parts. In this paper specify a filtration

for which the continuous part of the decomposition is 0 a.s. for any Ft
martingale.

It is a well-known fact that every martingale can be decomposed into continuous
and purely discontinuous parts. It is of interest to study the filtrations that do not
support continuous martingales (i.e. those for which every continuous martingale
with respect to that filtration is constant a.s.). In a previous work J. Jacod and
A.V. Skorokhod (1994) [5] introduced the notion of jumping filtration. A filtration .~t
is jumping if there is a sequence of increasing stopping times {Tn} (we will call them
loosely "jumps" ), such that the u-algebras 7t and coincide up to the null sets on
{Tn  t  In other words 7t = n {Tn  t} : A E They proved
that a (7-algebra is jumping iff it supports only martingales of bounded variation.
Under more restrictive conditions we generalize their result to filtrations supporting
only purely discontinuous martingales. As opposed to the jumping filtrations that
support only martingales of locally bounded variation with finitely many jumps on
finite intervals, our filtrations can support a martingale that has infinitely many jumps
on a finite interval. An example of such a filtration is the natural filtration of an Azema
martingale (e.g. the filtration generated by the sign of Brownian motion) or a natural
filtration of purely discontinuous Levy process with infinitely many jumps on finite
intervals.

To accommodate this change we replace the increasing sequence of stopping times
with a countable set of totally inaccessible stopping times with disjoint graphs.

Unless stated otherwise we always assume that the filtration 7t is complete, right-
continuous, quasi-left-continuous, = {0, 03A9} a.s., and the 03C3-algebra F~ is countably
generated. All martingales are considered to be in their càdlàg version.

Let us introduce the following definitions.

Definition 1. A filtration is called purely discontinuous if any continuous adapted
martingale is constant a.s.

*In this paper we present some of the results in my Ph.D. dissertation [3] completed under the
supervision of Professor A. V. Skorokhod at Michigan State University
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Definition 2. Let T be a countable collection of stopping times. Then we define
. ST = inf {v (w); v(w) > T(c~), v E T },

where T is a stopping time, and

= T(w)  E T},

where t is a deterministic time.

Note that Sr is a stopping time, while At is not. The random variables St and At
will be often referred to as "first jump after T" and "last jump before t" respectively.
This comes from the observation that if the set T is the set of all possible jumps
of adapted martingales then any Ft martingale does not have jumps on the interval
(T, Sr) and for all f > 0 there is an Ft adapted martingale that has at least one jump
on [Sr, Sr + E), An analogous statement is true for At.

Now we can state the main theorem of this article.

Theorem 1. . Let Ft be a purely discontinuous filtration. Then

(1) r e r},

where T is a countable collection of totally inaccessible stopping times with disjoint
graphs.

The intuitive meaning of this theorem is that the information contained in our
filtration came only from jumps of the martingales. It is worth pointing out that
this necessary condition is not sufficient. Two conceptually different examples of
filtrations generated by times and sizes of jumps of martingales that allow a non-trivial
continuous adapted martingale are given in [3]. At the same place we can find a useful
but not very general sufficient condition for a filtration to be purely discontinuous.
Well-known examples of purely discontinuous filtrations include natural filtration of
purely discontinuous Levy process and the smallest filtration that admits a sequence
of independent non-negative random variables as stopping times.

Before proceeding to the proof of the theorem we state a result directly implied
by the proof of part ~ of Theorem 2 (page 24) in [5].

Lemma 1. The following is true under the assumptions of Theorem 1: Let H  S

be two stopping times. If any .~t martingale is continuous on the interval (H, S) then
7t = ,~’H on {H  S} (i, e. for every A E .~t there is A’ E such that

Proo f of Theorem 1. Since the filtration is quasi-left-continuous and .~’~ is a comple-
tion of a countably generated a-algebra, it is known that there is a countable sequence
T of totally inaccessible stopping times with mutually disjoint graphs that exhaust all

possible jumps of martingales, i.e. if M is a martingale the graph C 

Let gt = o{A n {T  t}; A E 7r, T e T}. It is easy to see that 9 C .~. To prove
Theorem 1 we need to prove {.~’t } _ {Gt } .

To begin with we prove that for any totally inaccessible 7t stopping time v, v is
a 9 stopping time and the filtrations Qv = 7v on the set {v  oo}.
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If v E T, the assertion follows from the definition. Let us assume that v / T. It is
known that [v] = = v} n (T~. Thus for any finite t E R, and for any A E ~’v

{~T}

It follows that v is a stopping time with respect to Qt and Qv = .~v on the set {v  oo}.
This restriction arises from the definition of goo = V gt = {T  oo}; A T E

T}.
The following simple observations are valid for any sequence of stopping times

{Tn}. If = grn on {Tn  oo}, the sequence Tn is non-increasing and T, then

 ~} = {r  oo}.

Similarly the sequence Tn is non-decreasing and Tn -3 T, then

F = n~~F on {n  ~} D {7-  oo}.

The latter statement is true because the filtration ~t is quasi-left-continuous.
Recall Definition 2. We have defined:

ST = v E T},

and
=  t, T E T}.

The random variable At is a Qt measurable random variable. This follows from the
relation:

Similarly ST is a 0t (resp. 9t) stopping time if T is an 0t (resp. 9t) stopping time.
Since T is a countable set, it follows from the previous statements, that if T is an 9t
stopping time = GS, on the set {ST  oo}.

To finish the proof it will be enough to prove = 9to for a fixed to. I will do it

separately on three different Qto measurable sets.
Define the following Qto measurable sets:

B~ = U{Ato = T}~
TET

B3 - ~ Bl U B2 .

It follows from the previous discussion that = 9to on the set B2.
As mentioned before no Ft martingale has jumps between times T and ST for any

fixed Gt stopping time T. It follows from Lemma 1 that if T E T and B E there is
B’ E .~T = QT such that

Finally B2 C UTET{ T  t  ST} implies = Gta on Bl.
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To overcome problems associated with B3 we will enlarge our filtrations. Define

= 
At0 on the set B3,
oo otherwise.

Note that j4 is ~o measurable random variable, and {j4 = r  00} = 0 for all T ~ T.
Thus the graph [.4] is a subset of the left limit points of We further define~

~ =  ~; ~ ~ ~}, ~ V = gs V ~..

The filtration was augmented just enough to make the random variable ~4 a stop-
ping time.

Notice that if r 6 T, then ~- = This follows from the following: Let t  to
and B ~ ~

B n {r > } = (B n {« T ~ to)) U (B n (to  r}) c 

since both B C ~o and {~  r ~ to) C {~4 > ~}, which is an atom in the
03C3-algebra Ht.

As a next step we want to prove that = 6~ on the set {~  oo}.
. Observe that for T e T

Bn{r~}=)J~n{rg~}~ ~..
?~Q

Calculate on the set {~4  oo}
= cr{B n {~ > ~}, ~6 fit)
= cr{B n {~ > T > ~}, r ~ T, B ~ 
= r{D n {~ > ~}, D e ~r-} c ~_.

Since on the same set = 6~_ C 9~ C it is enough to prove = ~.
To do this we will need to decompose the stopping time ~4 in a manner very similar

to the decomposition to totally inaccessible and accessible parts. Let

p = = n  00} j ,
where the suprema extends over all possible sequences of predictable Ft stopping
times. Combining sequences such that the probability on the right-hand-side ap-
proaches p we construct a sequence S = of predictable Ft stopping times for
which the suprema is attained. (Note that ifp==0 this sequence is empty.) Define

1 = 
on the set U03BD~S{03BD = },

~ 
otherwise;

. ~ 
otherwise.

~ The filtrations are enlarged to satisfy the usual conditions where necessary.
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If v e S then the set {v = A} E = whence both A1 and AZ are t
stopping times. Furthermore the fact that is quasi-left-continuous implies that
.~’A1_ _ .~’A1 on the set  oo}. We need to prove the same for A2.

First we prove that A2 is a totally inaccessible Pt stopping time. Notice that

P(A2 = T  oo) = 0 for any 7t stopping time T.
Let T be a kt stopping time. I will prove that there is stopping time T’, such

that T = T’ on the set {T  A2}. Denote Cs = {T > s} n {A2 > ~} ===~{r A A2 > s}.
Since {A2 > s) is an atom in there is Ds e 7s such that Cs = Ds n {A2 > .9}.
We define

n Dq2’ °
q1~Q q2EQ

The right-continuity of the filtrations involved gives Ds E 7s, and the definition of Cs
gives Cs = Ds n > s}. Define = EDt}. It is a stopping time
and T = T’ on the set {T  A2}. The fact that A2 is a totally inaccessible Ft stopping
time follows directly.

At this point we will use a rather unusual feature of our enlargement: Notice

{~2  ~} = {~2  ~} F) {~ ~ ~} for 8  t  to.

However {~4~ ~ s} E 7t. This implies that the a-algebra 7t was augmented only by
1 set. More precisely

(2) Ft V (7({~2  t}) a.8.

Let Z be the set of all non-negative, integrable, measurable random variables,
and Z E Z. Simple algebra and equation (2) show that the martingale

(3) = ~i (t)1{.a2c} + ~a (t)11A2>t}~ >
where

03BEZ1 (t) = E[Z1{2~t}|Ft] P[2~t|Ft], and 03BEZ2 (t) = E[Z1{2>t}|Ft] P[2>t|Ft] .

Observe that the process is a submartingale and the function t ~
is continuous, hence there is a càdlàg modification of 

Thus we can assume without loss of generality that the processes çf (t) and are

Ft adapted càdlàg processes. This immediately implies that

~’A2 = .~) = E Z) C .~A2_ on the set{A2  oo},

since any Ft adapted càdlàg process is a.s. continuous at the time A2. Combining the
results for A1 and A2 we conclude that .~A = ~A. on the set {~4  oo}.

Lemma 1 implies that .~t is constant on any interval ~s, Sg), i.e. for any t > s and
B we have B’ E such that B n {Sg > t} = B’ n {SS > t}. A similar statement
is true for 03C3-algebra Hs 2014 notice that either  s or > Ss - and consequently
for 

To finish the proof we will closely follow the proof that appears in section 2 (page
22) of [5]. Let Mt be any uniformly integrable martingale such that Mt is 0 on [0, A~
and constant on [to , oo). To prove that Mt is 0 on [0, oo), we define Mt = Mt^Ss - Mt^s.
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Note that {Ss  to} C {S8  A}, and therefore the martingale 0 on the set

{Ss  to}, so Mt = . The statement established in the previous paragraph
implies that for any t > s there is a ~’s measurable random variable Nt such that
Nt = Mt on the set {s  t  S9}. Call G a regular version of the law of the pair
(Ss, conditional on and G"(t) = G ( (t, oo~ x 1~ n [to, oo~ x l~) ) . If t > s, we

have the following string of a.s. equalities (see [5] for justification):

(4) NtGn(t) = = 

x 
The functions G"(t) and  x 1{u>t}G(du, dx) (taken as a function of t) are a.s. constant
on the interval [0, to). The fact that the second function is constant follows from

G ((t, to) x (1~ 1 {o})) = 0 a.s. To conclude that M~ = 0 a.s. on the interval [0, to]
notice that the set {G"(o) = 0} is 7s measurable, and more important {G"(o) = 0} C
{Ss  to}. (The continuity of M~ at the point to is implied by = 

Since s was arbitrary, we get Mt = 0 for t E [0, to]. From here we finally obtain

Ft0 =  =  C Qto on the set {A  ~} = B3.
The proof is now complete, since if A E then

e 

D
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