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On processes with conditional independent
increments and stable convergence in law

Jean JACOD *

Abstract: In this paper we study the semimartingales X which are defined on an exten-
sion of a basic filtered probability space B = (I2, ~’, P) and which, conditionally on
7, have independent increments. We first give a general characterization for such processes.
Then we prove that if all martingales of the basis B can be written as a sum of stochastic
integrals w.r.t. the continuous martingale part and the compensated jump measure of Y,
then a process X has 0-conditional independent increments if and only if the characteristics
of the pair (X, Y), on the extended space, are indeed predictable w.r.t. the filtration 
Finally we prove a functional convergence result toward a process X of this kind.

Mathematical Subject Classification: 60F17, 60H99

Keywords: Levy processes, stable convergence

1 Introduction

It often occurs in limit theorems for sequences of processes Xn, defined on the same
stochastic basis B = (S~, .~, P), and especially when one looks for rates of
convergence in connection with various time-discretization schemes (like the Euler
schemes for stochastic differential equations or like inj6]), that one encounters limiting
processes X which are defined on an extension B = (H, .F, P) of B. And, quite
often, conditionally on the 03C3-field F, the process X has independent increments.

In a previous paper [5] we have studied this situation when X is continuous, both
from the point of view of characterizing all continuous processes X defined on an
extension of B and which have independent increments conditionally on F (called
"continuous biased conditional Gaussian martingales" ), and from the point of view of
limit theorems.

Here we try to fulfill the same program when X is discontinuous, a program which
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turns out to be much more difficult. In a first step we prove that a process X defined
on an extension B of B has, conditionally on .~, independent increments if and only
if the (t)-predictable characteristics of the pair (X, Y) are in fact (Ft)-predictable,
for any semimartingale Y on the original basis B. This characterization extends the
known fact that a process has independent increments if and only if its characteristics
are deterministic, and it looks quite nice. However, the necessity to check the above
property for every semimartingale Y on B makes it difficult to put in use in practice.

To cope with this problem, we give another characterization: if Y is a semimartin-

gale on B with respect to which the martingale representation property holds, then
for X to have conditionally independent increments it is enough that the character-
istics of the pair (X, Y) are (Ft)-predictable for this particular Y: this gives a much
easier criterion, but under a somewhat restrictive assumption. Then quite naturally
one deduces existence and uniqueness for a martingale problem related to this pair
(X, Y), thus extending some earlier results of Traki in [9] and [10].

Finally, within the scope of the above restrictive assumption, we give a criterion
for the convergence of a sequence of semimartingales Xn towards a process X with
conditionally independent increments. Although such limiting theorems were the ini-
tial aim of this paper, only very restricted results are so far available in this direction:
this is of course because only in such a specific setting can existence and uniqueness
for the associated martingale problem be proved.

To end up this introduction, let us mention that Grigelionis [2] has proved that
a semimartingale has .~-conditionally independent increments if and only if, within
the above framework, the characteristics of the process with respect to the smallest
filtration (.~t) which contains and such that ~’ are in fact measurable
w.r.t. ,~o: this characterization, and a related one given by Ocone in [7]), are of a
very different nature than the one exhibited here; more precisely the characterization
in the present paper reduces to Grigelionis characterization in the case where the
filtration (Ft) is Ft = ~’ for all t, but is quite different otherwise.

2 Extension of filtered spaces and processes with

conditionally independent increments

We use the traditional set of notation in the theory of semimartingales: see e.g. [4]
for all unexplained notation, and especially for stochastic integrals w.r.t. a random

measure, denoted by W * ~c.
We start with a basic filtered probability space B = (0, .~, P). We call an

extension of B another filtered probability space B = (S~, ~’, P) constructed as
follows: starting with an auxiliary filtered space (fi, such that each 03C3-field

~t_ is separable, and a transition probability from (~, .~) into .~’), we set

~’ _ ~ ® .~, = ® dW) = (2.1)

According to Lemma 2.17 of [3], the extension is called very good if all martingales
on the space B are also martingales on , or equivalently, is 0t-
measurable whenever A’ E Ft. This also implies that if X is a semimartingale on B
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with characteristics (B, C, v), it is also a semimartingale with the same characteristics
onB.

A process Z on the extension is called an X-conditional martingale (resp. F-
conditional local martingale, (resp. F-Gaussian process, resp. F-conditional PII) if

for P-almost all w the process Z(w, .) is a martingale (resp. a local martingale, resp.
a centered Gaussian process, resp. a process with independent increments) on the
space = F, 

Our aim is to characterize, in terms of the characteristics of various processes,
the d-dimensional semimartingales X on a very good extension B of B which are
F-conditional PII’s: so we start with a very good extension B of B and with a d-
dimensional semimartingale X on B. We denote by  its jump measure and by
(B, C, v) its characteristics, relative to some fixed truncation function h on JRd: by
this, we mean the predictable characteristics, relative of course to the filtration 

We give below three criteria for X to be an X-conditional PII. Two of them are
simple enough to state, but the last one necessitates some preliminary notation. Let
(E, ~) be an arbitrary Polish space with its Borel 03C3-field and â be an extra point and
Ea = E U {8}. Consider an arbitrary integer-valued adapted random measure ~c’ on

x E (on the basis B), which can thus be written as

= L (2.2)

where {3 is an (Ft)-optional process with values in Ea and such that for each w the
set {t : E E} is at most countable. Then we associate with the pair (X, ~’) a
new integer-valued random measure p on IR+ x (Rd x Ea) which is optional, on the
basis B:

p(ds, dx, dy) = L (dt, dx, dy). (2.3)

Recall that is said to be P ® ~-03C3-finite if there exists a P ® ~-measurable map
x E H (0, oo) (where P is the (Ft)-predictable o-field similarly

P denotes the (t)-predictable a-field on n x 1R+), such that E(W *  oo. Then

clearly p will be  ® as well (with obvious notation, ~~ being the Borel
03C3-field on Eô). .

Theorem 2.1 Let X be a semimartingale on the very good extension B, with Xo = 0
and predictable characteristics (B, C, v). . This process is an .~-conditional PII if and
only if any one of the following three equivalent conditions is satisfied:

(i) For any q E ~V* and any q-dimensional bounded martingale Y on ~i, the char-
acteristics of the pair (X, Y) are (Ft)-predictable.

(ii) For any q E ~V* and any q-dimensional semimartingale Y on B, the character-
istics of the pair (X, Y) are (Ft)-predictable.

(iii) a- The characteristics (B, C, v) are (Ft)-predictable.
b- For any continuous martingale N on B the bracket (N, XC) is -predictable.
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c- For any integer-valued adapted random measure ~’ on B (with E an arbitrary
Polish space) which is the (t)-compensator of the measure
p associated with X and in (2.3) is (Ft)-predictable.

Note that in (iii) we have some redundancy: (c) implies that u is (Ft)-predictable.
The proof of this theorem will be divided in many steps.

1) Let us provide some general facts about very good extensions. Denote by Mb
the set of all bounded martingales on B. In [5] it is proved that a càdlàg adapted
and bounded process Z on B is an .~-conditional martingale iff it is a martingale
on B which is orthogonal to all elements of ~b. By localization, and since for any
(Ft)-stopping time T and any w the map M is an (Ft)-stopping time, one
readily gets:

Lemma 2.2 Let Z be a locally bounded càdlàg adapted process on B. Then Z is an
X-conditional local martingale if and only if it is a local martingale on B, orthogonal
to all elements of Mb.

We also have the following:

Lemma 2.3 Let Z be a nonnegative or bounded measurable process on B, and set
Zt(~) = Qw(Zt(w, ~))~ . Then

(i) if Z is then Z’ is its (Ft)-optional projection,

(ii) .if Z is (Ft)-predictable, then Z’ is its (Ft)-predictable projection.

Proof. By a monotone class argument it is enough to prove the result when Zt(w, W) _
with V and V’ being bounded, adapted to and respectively, and

right-continuous in case (i) and continuous in case (ii). If = we have

Z~ = The extension being very good, the process Z’ is adapted to (~’t), and it
is right-continuous (resp. continuous) : so Z’ is (Ft)-optional (resp. predictable).

Let T be an (Ft)-stopping time and A E We have

E(ZT IA) = (VT1A vT) = E(VT1A VT) = 

hence = ZT and we have (i). In case (ii), if further T is (Ft)-predictable
and announced by a sequence (Tn) of (0t)-stopping times, from = zTn
and from the left-continuity, we deduce that = ZT, hence the result. 0

2) Here we give some properties related to our given d-dimensional semimartingale
X on fi (recall Xo = 0). Recall that it can be written as

X = (tc-v) + h’ ~~c, (2.4)

where h’(x) = x - on This notation will be kept all along the proof. We
also consider an arbitrary countable collection C of continuous bounded nonnegative
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functions vanishing in a neigbourhood of 0 and measure-determining for measures not
charging 0.

According to Theorem II-5.10 of [4] (where we can replace (iii)+(iv) of 5.5 by 5.6),
for any given c~ the process X(w, .) is a PII under Q~ if and only if below

holds:

There exist a cadlag IRd-valued function B = B(w) with Bo = 0, and a continuous
increasing function C = C(w) with values in the set of symmetric nonnegative d x d
matrices and with Co = 0, and a positive measure v = on (0, oo) x 
such that for all t > 0, c > 0:

03BD((0,t] x {x : |x| > ~})  ~, 
- 2 at 

:= v({t} x IR)  1, 
_ 

2 j (2.5)
OBt = 03BD({t} x h), 0394B|2 * Ut + 03A3st(1-as)|0394Bs|2  oo.

So we can introduce the following processes (where f E C, so Mf is real; M is d-
dimensional ; C’ and M’ are d x d matrix-valued; denotes the transpose):

Ct := Ct + (h - ~B)(h - + ~(1 - (2.6)
~t

M’ = MM’ - C’ , (2.7)

The processes Mf (c~, .), M(c~, .) and M’(w, .) are (7t)-local martingales under Q~,
(hence is the (Ft)-predictable compensator of the measure tc(w, .) under Qw).

Under the processes M f, M, M’ are even martingales under Q w, hence

f*03BDt(03C9)=Q03C9(f* t)

Bt(03C9)=Q03C9(Xt-h’* t) (2.8)

C’t(03C9)=Q03C9((Xt-h’* t)(Xt-h’* t)#)

3) In fact, if we knew that the variables in the right side of (2.8) were integrable w.r.t.
Qw, these formulae would give us (B, C’, v) right away. We do not know this yet.
However, the first formula in (2.8) makes sense for any nonnegative Borel function f :
so it defines a random measure 17 on (0, oo) x 2R which is (7t)-optional by virtue of
Lemma 2.3 and obviously satisfies the second condition in (2.5). Further, for every
nonnegative (7t)-optional process Z and all A E ~Zd we have

= ~~ ds, dx) = 

hence 77 is the (7t)-optional compensator of p.

4) Proof of Let Y be an arbitrary q-dimensional semimartingale on B.
The jump measure p of the pair (X, Y) is of the form (2.3), so its (7t)-predictable com-

pensator ~ is (7t)-predictable by hypothesis. The second characteristic is of
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the and C is (Ft)-predictable by (a) and C" is (Ft)-predictable by
(b), while C’ is so because Y is defined on the basis B. Finally the first characteristic
of ( ~ ), relative to the truncation function h 1 ® ® tc 1 ), is ), where B’ is the
first characteristics of Y w.r.t. h: so again the (7t)-predictability is clear.

5) If X is an 7-conditional PII, then (iii) holds: Here we suppose that X
is an 7-conditional PII, in addition to being a semimartingale with characteristics
(B, C, v). Then B, C, C , v satisfy (2.5), (2.6), and also (2.8), and they are all
(7t)-optional. We prove (iii-c) first. Let be any integer-valued random measure
on IR+ x E on the basis B and with (7t)-predictable compensator v’, with (E, E)
some Polish space. We construct p as in (2.3) and denote by ~ the (7t)-predictable
compensator of p.

Lemma 2.4 The random measure r~ is (7t)-predictable.

Proof. It is enough to prove that for any Borel subset A of JRd x a)} and
any nonnegative (7t)-predictable process Z whose (7t)-predictable projection is Z’
(given by Zt(c~, .) = .)) by Lemma 2.3), we have

E((Z ® lA) * ~~) = E((z’ ® lA) * (2.9)

_ 

Set 5T = A~ ({0}’ x Ea) and X" = A n ({0} x E). We have A = A’~A" and
A’ 0. Then (using first that 17 is the (7t)-compensator of p, then that is
the (t)-compensator of (03C9,.) under each Qcu, and Fubini’s Theorem several times):

E((Z ® la) * 

= J J QW(dw) J ~r)1 A~ (~, ~; ds, dx)

+ J J J dy)

= f 

+ J P(dW) J dsf dy) J 

= J J ds~ dx)

+ f J y)(1- {s} x ds~ dy)~

If we start with Z’ instead of Z we get of course the same expression: hence (2.9)
holds. 0

Next, B = X - h’ *  - M and C‘ = MM# - M’ are (t)-semimartingales and
(~)-adapted, hence (7t )-semimartingales, and also with bounded jumps. So they can
be written as B = A + N and C = A’ + N’, where A and A’ are (Ft)-predictable with
locally finite variation and N, N’ are locally in Mb (componentwise). We deduce the
following consequences:
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(a) M = X~ + h * (~ - v) - N + (B - A) being an (7t)-local martingale, as well as
X ~ + h * (~ - v), and B - A being (7t)-predictable with locally finite variation,
we get B = A and thus B is (7t)-predictable.

(b) M is orthogonal to Mb (Lemma 2.2), so for any continuous martingale N on
B we have 0 = (M, N) = N) - N), hence N) is (7t)-predictable
and (iii-b) holds.

(c) MMU - A’ is an (7t)-local martingale, from which we obtain as above that
indeed (M, M#~ = A’ is (7t)-predictable. Lemma 2.4 shows that the 

predictable compensator q’ of the jump measure p’ of the process (X, N, B)
is (7t)-predictable. Since AM = h(AX) - AN - AB, the (t)-predictable
compensator of ~s~, = (h(x) - y - z)(h(x) - y - z)d * p’ is H =

(h(x)-y-z)(h(x)-y-z)#*~’, which is (7t)-predictable . Then (XC-NC, (XC-
= A’ - H is (7t)-predictable. Since further Xc - Nc is orthogonal to Mb,

we have that C = (X~ - N~, (XC - N~)d ) + is (7t)-predictable: this,

together with (a), yields (iii-a).

6) Since (ii)~(i) is obvious, it remains to prove that (i) implies that X is an F-
conditional PII. So in the sequel we assume (i). We first introduce a number of

additional notation and give some preliminary results.

As before, v is defined by (2.8). We set for any nonnegative or small enough
function f (the last notation below being in accordance with (2.8)):

a(f )t = v({t~, at = a(f )t = v(~t~, at = a(1)t.
’ 

(2.10)
We know that the second condition in (2.5) holds, and that v is the (7t)-predictable

compensator of v. Since the process ~x~2) * v is finite-valued and (7t)-predictable,
hence locally integrable on B, the process ~x~2) ~ v is also locally integrable on B,
so the first condition in (2.5) holds true.

Let f be any function on IRd satisfying  for some constant C.

As seen just above, the processes f 2 ~ v and f 2 ~ v are locally integrable on B, while
the process a( f ) is the (7t)-predictable projection of the process a( f ). Hence there is
a unique locally square-integrable martingale on B, denoted by f * (v - v) and whose

jumps are 
0(f * (~ - v))t = a(f )t - (2.11)

Obviously, when ~ f (x) ~ _ we also have f ~ (v - v) = f ~ v - f ~ v, where
the last two processes are with locally finite variation.

7) Next, by considering the projection of each component of X~ on the stable subspace
of (t)-martingales generated by the (7t)-martingales, we obtain a sequence Nj of
continuous and pairwise orthogonal elements of Mb, and (7t)-predictable processes

such that = Ej + each X~~? being a continuous local martingale

orthogonal to Mb. By (i) each N~) _ (Nj, N~) is (7t)-predictable, hence
we can choose (7t)-predictable versions for the Thus each = N’

is a continuous (7t)-local martingale.
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At this point we can introduce our last ingredients, C and B, by putting

B = B + Xc + h * (v - v), C := C - (XC, = (2.12)
These processes are (7t)-adapted, and C is continuous increasing for the strong order
of symmetric d x d matrices. The third property of (2.5) is satisfied by construction,
and the last one because * v and ~s. are finite-valued. Further, we define
Mf for f E C, M and M’ by (2.7), and we obtain (with C’ given by (2.6)):

Mf = f ~ (~C - v) - f ~ (v - v), (2.13)

(2.14)
+ [M, M~] - C’. (2.15)

A simple calculation using ABt = a(h)t and t1Bt = a(h)t and (2.11) shows that

[M, M’lt - Cl = ( - v)t - (U - v)t -

-03A3(0394Bs(h(0394Xs)#-0394B#s) + (h(0394Xs)-0394Bs)0394B#s) .(2.16)
~c

By virtue of Step 2, to get that X is an 7-conditional PII we need to prove that
Mf for f E C, M and M’ are (7t)-local martingales, orthogonal to Mb. And for this,
since this property is already known for X~, it is clearly enough to prove that the
following processes:

Mf = f *( - 03BD)- f *(03BD- 03BD), if f ~ C or f =h or f = hh#
(2.17)

M"t=03A3s~t(0394Bs(0394Xs)#-0394B#s =03A3s~t(h)s(h(0394Xs)#- a(h)#s)
(2.17)

are (7t)-local martingales, orthogonal to Mb.

8) We already know that Mf in (2.17) is an (7t)-local martingale, and we will show
this later for M". Since Mf and M" are also purely discontinuous it is enough to prove
that they are orthogonal to an arbitrary Y E Mb which is also purely discontinuous:
so we fix such a Y below.

Recall that C is countable. Set C’ = C U U (the are

the components of h), and C" = C’ U {0}. For any g E C’ we consider the (7t)-local
martingale with bounded jumps N9 = g * (17 - v), and also N° = Y (the arbitrary
martingale fixed above). Call N = (N9 : g E C"), which is a cadlag process taking
its values in E = Then p denotes the jump measure of N, and p is the random
measure on (0, oo) x 1R x E defined by

dx, dy) = (dx).

A point y E E has components indexed by g E C", and denoted by y9 (and y° if
"g = 0" ), and we write with the same symbol y9 the function which associates with
y its component y9: by construction of p, we get

t1(y9 * p)t = a(g)t E C’. (2.18)

Finally, ~ and  denote the (t)-predictable compensators of p and p respectively.
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Lemma 2.5 The random measures rl and ~j are (7t)-predictable.
Proof. Since ~ is the (0, oo) x E-marginal of , it is enough to prove that ( is 
predictable. For this, it is even enough to prove that W is (7t)-predictable for
any W of the form w, s, x, y) = lA(x) 03A0i~I 1Ds (yi), where A E I is a finite
subset of C’, and each D~ is a Borel subset of 1R at a positive distance of 0.

If ~cl denotes the jump measure of the process (X, Nz : i E I), with (7t)-predictable
compensator vl, then W * p = W * ~ci (with an obvious abuse of notation), henceW * = W * Since vl is (Ft)-predictable by (i), we have the result. D

As a consequence of this lemma, one can factorize ( as such:

dx, dy) = (2.19)
where (w, i~, s, y) ~ A) does not depend on wand is ~ ® E-mesurable for anyA E Rd.

Lemma 2.6 We can find a version of F in (,~.19) for which Fs,y(w, g) :- f dx)g(x)is identically equal to y9 + a(g) for all g E C’.

Proof. Since C is countable, it is enough to prove that for any P ® E-measurable
function W such that jW * p~ is bounded and any g E C’ we have

E((W F(g) * rh) = + a(9))) * (2.20)
This follows from the following string of equalities (recall that each g E C’ is bounded) :
E((W F(g) * - E((W ® 9) * (by (2.19))
= E((W ® g) * (~ compensator of p)
= f P(dw) J J s, ds, dy)
= f P(dco) f W(w, s~ ds~ dy) J ~)) )
= J P(dw) J W(w s, y) ds dy) (by definition of ‘v and a(g))
= f f s~ y)(y9 + dy) (by (2.18)), >

and the last display equals the right side of (2.20). . D

Lemma 2.7 For each f as in (,~.17), the martingale Mt is orthogonal to
Y.

Proof. We have L1 Mt = a( f )t, thus Y] = (y°( f (x) - a( f ))) * P, In
view of (2.18) this is also equal to (y°( f (x) - yf - a( f )) * p, whose (t)-predictable
compensator is

(y°((f (x) - yf - a(f)) * (y°(F(f ) - ~Jf - a(f)) * ~1= 0
by virtue of (2.19) and Lemma 2.6: hence the result. D
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Lemma 2.8 The process M" is a martingale, orthogonal to Y.

Proof. Recalling ABt = a(h)t, we can write M" = V + V’, where

V - ~(a(h)’ - a(h)s)~ v’ _ 
sc st

We see that V’ is an absolutely convergent sum over at most countably many times
s belonging to the (7t)-predictable set J = ~ (c~, s) : : > 0}. Now, if T is an
(7t)-predictable time, we have a(h)T = = hence

= 0, on the set ~0  T  oo} and it follows that V" is an 
martingale.

Next, the jump times of V are also jump times of p, and in view of (2.18) we
clearly have (with obvious vector notations) V = yh(h(x)d - (yk)d - a(h)d) * p. Hence
the (7t)-predictable compensator of this process is

a(h)) * ~I = - a(h)d) * ~l = 0

by (2.19) and Lemma 2.6: hence V is an (7t)-local martingale.
Furthermore

Y] = yo (yh)* - a(h)*) * P,
whose (7t)-predictable compensator is 0 by the same argument as above, hence M"
is orthogonal to Y. D

This Lemma ends the proof of Theorem 2.1, and we finish this section with two
"extreme" examples:

Examples:

1- Any semimartingale X on B is obviously an 7-conditional PII. The correspond-
ing data in (2.5) are 17 = ~’ and B = X - h’ * ~c’ and C = 0, while the law of X
under Q~, is the Dirac measure 

2- Any process X on B which is independent of .~’ and is a semimartingale with
independent increments is in also an 0-Conditional PII. Then in (2.5) we should
take 17 = v and B = B and C = C, while the law of X under Qw is the a priori
law of X.

3 Existence and uniqueness of a martingale prob-
lem

3.1 A further characterization result

In addition to the previous setting, we are given a basic q-dimensional semimartingale
Y on the basis B, with jump measure ~c’ and characteristics (B’, C’, v’), w.r.t. some
truncation function /z of IRq.
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We give another characterization of 7-conditional PII’s, in connection with this
basic semimartingale Y, when the martingale representation property holds on B holds
w. r. t. Y, meaning that each local martingale N on B can be written as N = No +
’U" . Yc + W * ( ’ - v’) for some predictable IRq-valued process u and some P ~ 7Zq-
measurable function W.

Theorem 3.1 Let X be a d-dimensional semimartingale on B with Xo = 0, and let Y
be a q-dimensional semimartingale on B, w. r. t. which the martingale representation
property holds on B. Then the following two statements are equivalent:

(i) The characteristics of the pair (X, Y) are (7t)-predictable.

(ii) The process X is an F-conditional PII.

Proof. Due to Theorem 2.1, we only have to prove that (i) above implies (i) of
Theorem 2.1. So in the sequel we assume (i) above.

Pick any r-dimensional bounded martingale N whose components are in Mb and
with bound A. By hypothesis

(3.1)

for some r x q-dimensional (7t)-predictable process u and some r-dimensional P~Rq-

measurable function W. . The second and third characteristics of the pair are

denoted by ( ) and ~, and its jump measure is p. Let h be a truncation

function on lRr such that for 2A. Let p’ be the jump measure of ( . ], ,
and ( ( D// ) ) , C characteristics, relative to the truncation function

/ ~01 B~ 10~ / °
First B" = 0 and D’ is (7t)-predictable. Next Dt~ _ 2:k=1 J’o hence D is

(7t)-predictable because u and C’ are such.
It remains to prove that r~’ is (7t)-predictable. With the convention that W (., t, 0) =

0 and the notation Wt = J W (., t, y)v’({t}, dy), we have for any Borel subset A of
IRd+rB{0}:

1A*03C1’t =t0IRd IRq1A(x,W(.,s, y) -s)03C1(., ds, dx, dy)+ 1A(0, -s)1{0394Xs=0,0394Ys=0}

whose (7t)-predictable compensator is

1A*~’t= t0IRd IRq 1A(x, W(., s, y) - ds,dx, dy)+ 1A(0,s)(1- as),

where as = r~({s} x lRd x IRq). We deduce from (i) that these processes lA * r~’ are
(Ft)-predictable, hence the measure ~’ is (Ft)-predictable as well. D
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Remark: If we only assumed that all purely discontinuous martingales on B are of
the form W * (~’ - v’), the same result would hold true, provided we add in (i) that
the process (X, N) is (7t)-predictable for any continuous martingale N on B which
is orthogonal to Y~. Then Proposition 1-2 of [5] would be a particular case of this
extension of Theorem 3.1.

3.2 A martingale problem

It is well known that if X is a d-dimensional semimartingale with deterministic char-
acteristics (B, C, v) it is a PII whose law is entirely determined by the triple (B, C, v) :
the martingale problem associated with this set of characteristics has thus a unique
solution. Our aim is to give similar results for conditional PII’s. Exactly as in the
continuous case of [5], in order to properly state the problem we start with a stochastic
basis B and we have to define our martingale problem in connection with some given
semimartingale Y on B. We will in fact prove our results only under the additional
assumption that the martingale representation property holds on B, w.r.t. Y.

So let Y be a q-dimensional semimartingale on B with characteristics (B’, C’, v’)
and jump measure ~’. Next, either we will have a d-dimensional 7-conditional PII
X, or we will construct it: in both cases we have the "potential" characteristics of

the pair (), relative to the truncation function ( ): they are denoted by

(B, C, ~). In view of Theorem 2.1, they are (7t)-predictable and defined on the basis
B, and they satisfy the following (necessary) properties:

Bo = 0, B has locally finite variation

Co = 0, C is continuous non-decreasing for the strong order
of symmetric nonnegative (d + q) x (d + q)-matrices

1 II Ixl2 + lyI2)) * ~t  At := ~({t} x IRd x  1 
(3.2)

0394t = ~({t} ,dx, dy( ),
as well as the following compatibility relations with the characteristics of Y:

B = ( B ) , C N = ( ) - (3.3) )

Observe that if one is able to construct the corresponding process X, its charac-
teristics will necessarily be (B, C, v), with Band C as in (3.3) and v given by

v(ds, dx) = ; (3.4)

Let us also associate some further ingredients with (B, C, ~). First, the non-
decreasingness of C implies the existence of an (Ft)-predictable Rd x Rq-valued pro-
cess such that

C"=u~C’. (3.5)
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Second, in view of (3.3) we have the factorization

ds, dx, dy)1{y~0} = v’(w; ds, dy)F(w, s, y; dx), (3.6)

where F is a transition probability from (03A9 x IR+ x ® Rq) into Finally
we consider the following (Ft)-predictable measure v and process a(g) for g bounded
measurable on lRd:

v(ds, dx) = d~, {0}), , a(g)s = dx), (3.7)

as well as the (7t)-predictable processes a(g) and a of (2.10) and

a’(9)~ = a’ = a’(1). (3.8)

Theorem 3.2 Let Y be a q-dimensional semimartingale on B, w.r.t. which the

martingale representation property holds, and with characteristics (B’, C’, v’). Let

(B, C, ~) be a triple which is (Ft)-predictable and satisfies (3.2) and (3.3).
a) There exists a d-dimensional 7-conditional PII X on some very good extension

B of B such that the characteristics of the pair (X, Y) are (B, C, rt). . The "conditional"
characteristics associated with X in are always given by (with 0/0 = 0, and
with the notation in (3.5), (3.6), (3.7) and (3.8)):

B=B+n~Y~+(F(h)-i a~)*(!~~-v’)
C = C _ (u 2022 Crr)d 

- £§) * p’ + £f£ * v’ Vg > 0 g(0) = 

(3.9)

dg>0 with g(0)=0.

b) We can always take for the canonical space of all IRd-valued
càdlàg functions and for X the canonical process on . With this choice there is a

unique probability measure P on (S~, .~) such that B is a very good extension of B, and
P solves the martingale problem associated with the pair (X, Y) and the characteristics
(B, C, r~) (and thus X is an 7-conditional PII on B).

This means in particular that all expressions in (3.9) make sense, and in particular
the two stochastic integrals showing in the first display. This result can be viewed as
an existence and uniqueness result for a martingale problem: this type of problem was
considered by Traki in [9] and [10], where existence was already proved. But it also
says that whatever process X solves the problem (on whichever extension B), then
the conditional law of X knowing J’ is completely determined by the (deterministic)
characteristics given by (3.9).

Proof. 1) Assume that X and is an ,~-conditional PII on a very good extension ~3.
As already said, the characteristics of (X, Y) are (Ft)-predictable and satisfy (3.3) and
(3.4). We presently prove (3.9) for the characteristics associated with X in 

In fact, v is given by (2.8), and B and C are given by (2.12), once u and N are
determined. In view of the martingale representation property we can indeed choose
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N = Y~, in which case a version of u is given by (3.5): that C satisfies (3.9) is then
obvious.

The next step consists in proving the last property in (3.9). Take g Borel bounded
nonnegative on lRd, with g = 0 on a neighbourhood of 0. We know that g * v - g * v is
a local martingale on B, hence of the form W9 * (u’ - v’) for some predictable function
W9 by virtue of the martingale representation property again. Taking an arbitrary
nonnegative P (g) [-measurable function W such that s, 0) = 0, we have by the
same calculations than in Lemma 2.6, and with p denoting the jump measure of the
pair (X, Y):

E((WF(g)*v) - 

= J J J s~ ds~ dy)

= J J s~ ds~ dy) J ~))
= J J s~ y) dy) - E((W a(9)) * 

Using = g*v+W9*(tC’-v’), we get a(g)t = a(g)t+W9(t, where for any
function U we set U(., t, y)v’(~t}, dy). Therefore the previous expression equals
E((W (a(g) + W9 - which in turns equals E((W (a(g) + W9 - 
because a(g) + W9 - W9 is predictable. Hence

F(g) = + W9 - W9, ds, dy) - a.e.

Furthermore, combining (3.4), (3.6) and (3.7) yields a(g) = + F(g), hence

F(g) - F(g) = a(g) + W9 - W9, P(dw)v’(w; ds, dy) - a.e.

Then F(g)(l - a’) = a(g)a’ + a’), and thus a(g) = 0 wherever a’ = 1 and,
with the convention 0/0 = 0,

W9 = F (g) - , ds, dy) - a.e.

Since g * v = g * v + F(g) * v’, the last property in (3.9) is obvious. Finally the first
one is a direct consequence of the last one and of (2.12) with N = Y~.

2) So far we have proved the second part of (a). It remains to prove (b), which
obviously implies the first part of (a).

Define (B, C, v) by _(3.9). We first show that this triple satisfies (a~,~ for almost all
c~. This is obvious for C, because of the second property in (3.2). Set J = {(c~, t) :

> 0}, hence a(g)t = 0 if t ~ J. It is obvious that ds, s) is a

positive measure. If t E J we have v({t}, g) = F(g)(t, if 0 and = 

otherwise: it follows that ~7 itself is a positive measure.

Next all integrands in the last display of (3.9) are predictable, hence it is easily
checked that the (J’t)-predictable compensator of g * v + F(g) * v’ = g * v.
So the third property in (3.2) yields that 17 meets the first property of (2.5). We
have at = F(t, IRd~{0~)  1 if ~Yt 7~ 0, and at = 1- ~ = A~  1 (because of
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the fourth property in (3.2)), hence v meets the second property in (2.5). The third
property of (2.5) is obvious from (3.9) and the last property in (3.2) and the already
proved fact that a(h) = a(h) + F(h). Finally the last property in (2.5) can be proved
separately for each component or, equivalently, in the 1-dimensional case. Then we
have

Gt = (h - ~B)2 * vt + ~(1- as)OB~ - * vt + ~(a(h2)$ - a(h)8)
~t ~t

~ * vt + ~ a(h2)s = h2 * vt.
st

But the (7t)-predictable compensator of 17 is v, and h2*v is locally integrable by (3.2)
and (3.7). Hence G is also locally integrable, and (2.5) is proved.

At this point we consider for (fZ, , (t)t>0) the canonical space of all càdlàg
functions from 2R-;- in IRd, with the canonical process X, and we denote by Q~ the
unique probability measure on this space under which X is a PII with (deterministic)
characteristics (B, C, v). Since these are (7t)-optional, it is easy to check (through
Lévy-Khintchine formula for example) that Q is indeed a transition probability from
(SI, F) into (Q, ,F), so we can define the extension (2.1) . We even have that W H
QúJ(H} is 7t-measurable whenever and thus our extension is very good. The
processes of (2.7) are 7-conditional martingales, hence are martingales and, since B
is clearly a semimartingale by (3.9), we deduce that X itself is a semimartingale on
the extension, as well as an 7-conditional PII.

Then we can consider the characteristics of the pair (X, Y), which we denote by
C~, and accordingly we have B~, and so on... We repeat the content

of Step 1: of course we obtain the same triple (B, C, v). And of course we have

B’~ = B’ and C’~ = C’ and v’o = v’. The first relation (3.9) yields j3~ = B and
uO = u, hence the second relation yields C’~ = C’. The third relation in (3.9) yields
first that F(g)O = F(g) ~u’-a.e., next that a(g)O = a(g), next that v~ = v: Putting
these together with (3.6) and (3.7) gives r~~ = r~. In other words the pair (X, Y) has
the desired characteristics, and we are finished. 0

When the pair (X, Y) is quasi-left continuous, the formulae (3.9) greatly simplify:
in (3.2) we have At = 0 and B is continuous, so the last property is void; we also have
at (g) = 0 for any g, so

B=B+u2022Yc+F(h)*( ’-03BD’)C=C-(u2022C’’’)#

(3.10)

g*03BD=g*+F(g)* ’ ~g~0 with g(0)=0.

Remark: If we drop the martingale representation property w.r.t. Y, the result
becomes wrong. For example consider for B the 1-dimensional canonical space with
for P the unique measure under which the canonical process Z is a compound Poisson

process with a Levy measure F. Suppose further that F is a probability measure, and
let Tn be the successive jump times of Z. Consider also Yt = this is a
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semimartingale (and a standard Poisson process), but the martingale representation
property does not hold (unless F is a Dirac mass, a case which we exclude). If h(l) = 0
we then have B’ = 0 and C’ = 0 and v’(ds, dy) = ds 

Then choose (B, C, ??) in such a way that C = 0 and Bt = tF(h) and dx, dy) =
dsF(dx)~1 (dy), so that (3.2) and (3.3) hold. Then X = Z solves our problem and in
this case 17 equals the jump measure associated with Z (of course conditionally on ~’
the process X becomes deterministic). Another way to solve the problem is to take
X = where the Un’s are i.i.d. with law F and independent of the
process Z: in this case 17 is given by (3.10) with v = 0.

4 Stable convergence to a conditional PII

We end this paper with a convergence result related to the situation studied in the
previous Section. The setting is as follows:

First, we have a q-dimensional quasi-left continuous semimartingale Y on an ar-
bitrary basis B, with characteristics (B’, C’, v’), w.r.t. some continuous truncation
function h. We will assume that the martingale representation holds for B, with
respect to Y.

Next we have a sequence Xn of d-dimensional semimartingales on B, whose charac-
teristics are denoted by Cn, vn) w.r.t. another continuous truncation function h.
As before we need to consider the jump measure pn and the characteristics (Bn, Cn, r~n)
of the pair ( w.r.t. ° the truncation ( h ® 1 ), and we have

""~~ ~ ~ C’ 
>

with C"n = . Finally introduce the following predictable cad processes,
increasing in the set of nonnegative symmetric (d + q) x (d + q) matrices:

Gn=n+n, where n=()*~n. (4.1)

In order to state properly the convergence result we need to recall some facts about
stable convergence. Let Zn be a sequence of random variables with values in a metric
space E, all defined on (S~, .~, P) . Let (S~, P) be an extension of (S~, .~’, P) (as in
Section 1, except that there is no filtration here), and let Z be an E-valued variable
on the extension. Let finally ~ be a sub 7-field of .~. We say that Zn stably converges
in law to Z if

E(V f (Z)) (4.2)
for all f bounded continuous and all bounded variables V on (0, .~’). This
property, introduced by Renyi [8] and studied by Aldous and Eagleson ~1~, is (slightly)
stronger than the mere convergence in law. It applies in particular when Zn = X’~
and Z = X are Rq-valued cadlag processes, with E = the Skorokhod

space.
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Theorem 4.1 Assume that Y is a quasi-left continuous semimartingale on B, w. r. t.

which the martingale representation property holds on B. Assume also the existence
of an IRd-valued continuous process with finite variation B, of an ~ IRd+q-valued
continuous process G and of a random measure ~ on 1R+ x IRd x IR9 not charging
R+ x {0} and satisfying ~({t} x IRd x = 0 identically, such that the following
convergences hold:

[ ~P 0 ~t ~ IR+, (4.3)
8Ct

Gt -~p Gt, Vt E 1R+, (4.4)

9 * ~)t -~P g * ~lt Vt E IR+, , dg E C. (4.5)

(recall that C is a countable sequence of continuous bounded nonnegative functions
on IRd, vanishing in a neigbourhood of 0, and maesure-determining for measures not
charging ~0}).
Then:

(i) The measure rt and the processes Band G are predictable with Bo = 0 and

G0 = 0, and G = + where = ( ) * ~ and is continuous

nondecreasing in the set of nonnegative symmetric (d + q) x (d + q) matrices and

can be written as C = ( ).

(ii) There is a very good extension B of B and a quasi-left continuous adapted pro-
cess X on B which is an 7-conditional PII and the pair (X, Y) admits the

characteristics (B, C, r~), where B = . .

(iii) The processes X n converge stably in law to X .

Observe that in (4.4) the last square block of size q x q automatically converges,
since it equals C’ + h * v’.

Proof. 1) The three convergences imply that B, G and r~ are (7t)-optional, hence
predictable since they are "continuous" in time. In order to finish the proof of (i),
and since G~‘ and C, hence C are clearly symmetric, it is enough to show that for any
unit vector u E the process udCu is non-decreasing. Up to taking a subsequence
still indexed by n, we may assume for this that the convergences in (4.4) and (4.5)
are almost sure. Then if s  t, (4.5) classically yields that lim inf n C9 )u >

- Cs)u, and it follows that lim supn ud(Ct - Cg )u _ - yielding the
fact that u#u is non-decreasing.

So (i) is proved, and (ii) follows from Theorem 3.2. As a matter of fact, in we

can realize X as in (b) of Theorem 3.1, with the canonical space .~’, = 

and the canonical process X, and we have P(dw, dw) = Note that Qw
is entirely determined by (B, C, v) in (3.10).
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2) Let V be an arbitrary bounded variable on (S~, .P), and Nt = Denote
by (gt) the smallest filtration w.r.t. which all the processes N, Y, Xn and the
characteristics Cn, are adapted. Then the later are also the characteristics of
the pair Y) for the filtration G, and N = 

The a-field Coo = Vt gt is separable, so there is a sequence of bounded variables
starting with Vo = V, which is dense in goo, P). We set Nm =
and according to [5] we have two properties:

(A) Every bounded martingale on P) is the limit in locally uniformly in
time, of a sequence of sums of stochastic integrals w.r.t. a finite number of Nm’s.

(B) (~ is the smallest filtration, up to P-null sets, w.r.t. which all are adapted.

3) Introduce some more notation. First N = can be considered as a process
with paths in Next ~n = and ~l = can be considered
as processes with paths in We have Gn, 3~~‘) --~P (B, G, ~l) in the
Skorohod sense, by our convergence assumptions. These assumptions also yield, by
virtue of Theorem VI-4.18 of [4], that the sequence Y) is tight. But from the
martingale representation property and the fact that Y is quasi-left continuous the
jumps of N are the same as the jumps of Y, so the sequence (N, Y, is also tight.

Finally, it follows that the sequence (N, Y, B’, ?~’~) is tight for the
Skorohod topology in the relevant space, and for any limiting process of this sequence,
say Y, X, B’, B, G, ~), we have Y, B’, B, G, ?~) = ,C(N, Y, B’, B, G, 3~l).

4) Choose now any subsequence, indexed by r~’, such that (N, Y, B’, ~l"‘)
converges in law. From what precedes one can realize the limit as such: consider again
the canonical space .F, = with the canonical process X. Then set
fi = n x S2 and Q = goo and Gt = ns>tgs ® fis. Since goo = a(Vm : m E ~V)
up to P-null sets, there is a probability measure P’ on whose 03A9-marginal is
P, and such that the laws of (N, Y, B’, ) converge to the law of
(N, Y, X, B’, B, G, ~l) under P’.

Therefore we have an extension B’ = (Q, Q, (~t), P’) of B’ = (SI, (Gt), P) with
a disintegration dw~ as in (2.1) (the existence of Q’ is obvious,
due to the definition of (SI, .~)), and up to P’-null sets the filtrations l~ and (gt) are
generated by N and (N, X) respectively (use Property (B)).

Now we apply Theorem IX-1.17 of [4] to obtain (as in [5]) that on B’ the process
(X, Y) is a semimartingale with characteristics (B, C, 1]) and also that each component
of N is a martingale. Hence Property (A) yields that all martingales on B’ are also
martingales on I3’, hence our extension is very good. Therefore Theorem 3.2 gives that
the conditional law of X knowing Coo under P, is entirely determined by Y and the
characteristics of the pair (X, Y), and more precisely by the triple (B, C, v) of (3.10):
it yields in particular that Q~ = Q~ for P-almost all u, and also that the original
sequence (N, Y, xn, B’, Bn, Gn, converges to (N, Y, X, B’, B, G, ~l) as defined on
the basis 1~i’.

5) Now we will prove that

E’(V f (.Y)) (4.6)
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for any continuous bounded function f on ID(IR+, For this it is enough to
consider the case when f(x) depends on the function x only through the values x(s)
for s E [0, T~, for an arbitrarily large but finite T. But then, the left side of (4.6) is

which goes to E’(NT f (X )) = E’(V f (X )) because of the convergence
proved above and because T is not a fixed time of discontinuity of N (which is quasi-
left continuous). Therefore (4.6) holds.

Since we have seen that Q(j = Q~, for P-almost all w, we also have E‘(V f (X )) =
E(V f (X )). Then indeed (4.4) gives E(V f (X )). Since this holds

whatever bounded variable V is choosen, we have the desired stable convergence. D
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