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HORIZONTAL MARTINGALES IN VECTOR BUNDLES

MARC ARNAUDON AND ANTON THALMAIER*

ABSTRACT. Canonical prolongations of manifold-valued martingales to vector bun-
dles over a manifold are considered. Such prolongations require a lift of the connection
from the manifold to the corresponding bundle. Given a continuous semimartingale
X in M, if V is a connection on M (i.e. a covariant derivative on T M) and ~’
the lifted connection on E (i.e. a covariant derivative on T*E), we consider semi-

martingales J in E, living above X and linked to X via = where

: TXM -)’ TJ E is the horizontal lift; and denote the Itõ differentials

with respect to the given connection. Such semimartingales J in E will be called hori-
zontal semimartingales, resp. horizontal martingales in case when X is a V-martingale.
There are numerous ways of lifting V to ~’. Wemainly deal withhorizontal and com-
plete lifts. Horizontal lifts give rise to the notion of covariant Itõ differentials. For

covariant Itô differentials a commutation formula with ordinary covanant differentials
is established. As an application, covariant variations of stochastic parallel transport
and their relation to Yang-Mills connections are investigated. On the other side, within
the framework of complete lifts of connections, the martingale property is preserved
under taking derivatives (or exterior derivatives) of families of martingales and is inher-
ited to diffusions on the exterior cotangent bundle with the de Rham-Hodge Laplacian
as generator Moreover, in a natural way, derivatives of harmonic maps are harmonic
as well.
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1. INTRODUCTION AND NOTATIONS

Let M be a differentiable manifold of dimension m, endowed with a linear connection

(1.1) V: I r(TM) ~ r(T*M ® TM), ~VW = (VW)V,
and let ~r : E -~ M be a vector bundle over M. Typically, E will be the tangent bundle
T M, the cotangent bundle T * M, the exterior tangent bundle ATM, resp., cotangent
bundle AT* M, or more generally, some Dirac bundle over M. Let Fo be a vector space
isomorphic to the typical fiber of E. We denote by ~r : L (Fo, E) --~ M the vector bundle
of linear maps Fo -~ Ez, x E M. In other words, L(Fo, E) = Fo @ E when Fo is
considered as the trivial bundle over M with fiber Fo. Let L(M) = , T M).

In this article we shall deal with the following problem: Given a V-martingale X
in M, we are interested in lifting X from M to L(Fo, E) in such a way that the lifted
process W above X (i.e., ~r o W = X) yields a martingale taking values in the vector
bundle L(Fo, E), and such that there is a one to one correspondence Z e ~VZ between
the local martingales in Fo and the martingales in E which project onto X. This clearly
requires a connection on E as an additional structure, i.e. a covariant derivative on TE,
(1.2) v : r(TE) -~ 

The problem of lifting martingales and connections to vector bundles over a manifold
has already been studied in [16] where horizontal and complete lifts to vector bundles
were investigated. Extending our work in the case E = T M [2], we focus here on various
properties of horizontal and complete lifts, in particular in relation to the variation of
families of semimartingales. We differentiate martingales with respect to a parameter,
take exterior products, to obtain martingales for complete lifts of connections. Finally we
relate our results to the theory of diffusion operators and stochastic flows, as developed
in [10].

Our original motivation comes from the following problem: For functions f E
Coo (M) on a Riemannian manifold M it is well-known that f is harmonic (i.e., A f = 0
where A is the Laplace-Beltrami operator on M) if and only if the composition f o X
with Brownian motions X on M provides real-valued local martingales. Instead of
functions f, one may consider differential forms a E r(nT*M). We like to find a
connection i7 on E = AT* M in the sense of ( 1.2), such that a similar characterization
holds true: a is harmonic (i.e., Aa = 0 where A is the Hodge-de Rham operator on
forms) if and only if a o X is an E-valued V-martingale for any Brownian motion X
on M. More generally, if E is a Dirac bundle and D its Dirac operator, we investigate
connections i7 on E such that a E r(E) is harmonic (i.e., Aa := -D2a = 0) if and
only if all compositions a o X with Brownian motions X give V-martingales in E.

These characterizations do not determine the connection in a unique way, as long as
we consider only martingales which project to Brownian motions on M. As well-known,
the full class of V-martingales determines the connection up to torsion.

The paper is organized as follows. In Section 2 we recall some results concerning
complete lifts of connections to tangent and frame bundles. Theorem 2.1 ([16] Corol-
laire 8) gives a one to one correspondence OZ between the set of local martingales
in a tangent space TXoM and the set of martingales in the tangent bundle T M which
project onto a given martingale X in the manifold; here 0 is not the usual parallel
transport but the geodesic transport along X, see Eq. (2.1) below. Theorem 2.2 ([3]
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Corollary 3.14) guarantees that Ito stochastic differential equations between manifolds
differentiate like ordinary equations, if the tangent bundles are equipped with the com-
plete lifts of the connections in the manifolds. Corollary 2.3 ([3] Theorem 4.1 and [2]
Theorem 3.1) gives a commutation formula between antidevelopment and differenti-
ation with respect to a parameter, and an interpretation of martingales in the tangent
bundle as stochastic Jacobi fields, i.e. as derivatives of families of martingales living in
the manifold.

In Section 3 we continue to work on the tangent bundle of M. The main result is
Theorem 3.1 which says that the commutation formula for antidevelopment and deriva-
tion (Corollary 2.3) still holds true if parallel transport is replaced by deformed parallel
transport (i.e. geodesic transport). Again the key step in the proof is Theorem 2.2.

In Section 4 we consider the situation where a connection V on M and a covariant

derivative V E on the vector bundle E is given. It is well known that there is a canonical
induced connection Vh on E, called the horizontal lift of V and VE. Here we give
characterizations of martingales, parallel transport and antidevelopment with respect
to In particular, a covariant It6 differential of an E-valued semimartingale is defined.
The main result is a commutation formula for the covariant I16 differential and the

covariant derivative with respect to a parameter (Theorem 4.5). Various applications
related to Yang-Mills connections, and in relation to parallel transport along rescaled
Brownian bridge are given. In particular, the covariant derivative of parallel transport
along a Brownian motion is shown to play the same role in the theory of Yang-Mills
connections, as the image of a Brownian motion under a harmonic map in the theory of
harmonic maps. Also we write a Taylor expansion up to order 3 of the parallel transport
along a rescaled Brownian bridge, and prove that for Yang-Mills connections all the
drifts of the terms of the expansion vanish (Theorem 4.13).

Section 5 is devoted to the study of a class of connections on E which differ from a
horizontal lift by a bilinear map similar to the one we obtain when considering complete
lifts on T M. We describe again martingales, parallel transport, antidevelopment. This
extends Meyer’s results in [16] to connections with torsion on general vector bundles.
Note that for Le Jan-Watanabe connections, which are connections considered in most
of the examples given here, the torsion term cannot be suppressed. We discuss the
construction of dual connections in dual bundles and tensor products. When M is a
Riemannian manifold, a Laplacian on E associated with the considered connection is
defined, and a stochastic interpretation to the heat equation on E (Theorem 5.8 and
Corollary 5.9) is derived.

In Sections 6, 7 and 8 examples of connections constructed in Section 5 are given.
In Section 6 we consider the Levi-Civita connection V~ to the natural pseudo-metric
2dxi~pi in the cotangent bundle T * M. It is not the dual connection to the complete lift
in T M, as discussed in Section 5. However we remark that when M is a Riemannian
manifold equipped with the Levi-Civita connection, then the natural map (T M, -

(T*M, is affine.

In Section 7 we define connections V~ on the exterior bundles APT M and by duality
on M, which we call complete lifts of D. They naturally extend the definitions
in tangent and cotangent bundles. When M is a Riemannian manifold, the trace of the
bilinear map added to the horizontal lift is the term arising in Weitzenbock’s formula.



422

However we are interested in the more general context of Le Jan-Watanabe connections
i7 (Definition 7.5) associated with diffusion processes X on M. The main result of
this section (Proposition 7.6) says that if X is a V-martingale then TXp is a ~c-

martingale. This is in fact a consequence of a formula established in the proof of
Theorem 3.3.8 in [10], and can be seen as some kind of extension of the stochastic
Jacobi field representation of martingales in the tangent bundle. The principal argument
of our proof is Corollary C.5 in [10]. Besides the stochastic Jacobi field representation,
the aim is to translate the geometric theory of diffusions on manifolds as developed in
Elworthy-Le Jan-Li in [10] into the language of martingales in manifolds.

In Section 8 we deal with complete lifts to Dirac bundles. Again the problem is
to find a bilinear map which gives the complete lift when added to the horizontal lift,
and such that its trace is the Weitzenbock term. There is a natural candidate built from

the Clifford action, which in the particular case of the exterior bundle however does
not respect the graduation, so it does not generalize the complete lift of Section 7. If

the Clifford action is the difference of a creation and an annihilation operator, another
natural candidate differs from the complete lift in Section 7 by an antisymmetric term,
so both connections yield the same class of martingales.

In Section 9 we prove that the derivative of an L-harmonic map u between manifolds

M and (N, VN) is a harmonic map M --~ T * M g) TN if T * M ® T N is endowed
with a complete lift ~~ constructed along the lines of Section 5, under the condition that
there exists a Le Jan-Watanabe connection VM on M induced from the second order
generator L (Corollary 9.2). The condition is satisfied when M is a Riemannian mani-
fold and DM its Levi-Civita connection. Under a slightly more restrictive assumption,
Corollary 9.2 could also be proved by means of the method of filtering out redundant
noise as in Elworthy-Le Jan-Li ([10]). Here we give a proof based on a geometric Ito
formula involving complete lifts of connections. Corollary 9.2 can be seen as a gener-
alization of the derivation property for geodesics ; it illustrates in particular the interplay
between complete lifts and derivations.

In Section 10 we consider some kind of inverse problem to the one of Section 9.
Here we are given an L-harmonic p-form a where L is a second order generator, we
know that (a, 0) is a local martingale where 0 is a horizontal martingale as defined in
Section 5, and we want to prove that (a, TX is a local martingale if X is a diffusion
with generator L. Proposition 10.1 says that this is true under some Le Jan-Watanabe
condition. Once more this is an illustration of the interaction between complete lifts and
derivations. Proposition 10.1 is due to Elworthy-Li-Le Jan ([10] Theorem 2.4.2). We

give an alternative proof relying on It6’s formula.
Throughout the paper we adopt the following conventions. By a connection on a

manifold M we mean a covariant derivative on TM as in Eq. (1.1). The manifold M

may be a vector bundle E as well, then a connection on E will be a covariant derivative
on T E in the sense of Eq. (1.2). In many cases E, considered as vector bundle over M,
may carry a connection

r(E) --3 r(T*M ® E).
We refer to this as a covariant derivative on E.

A covariant derivative on E gives rise to the splitting of the bundle TE into the sum
of a horizontal bundle and the vertical bundle. The covariant derivative of a smooth path
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t ~ e(t) E E, denoted by VDe, will be (é vert) where is the vertical part of
e in this splitting, and veo : Teo E is the vertical lift to eo E E. Let Fo be a
vector space isomorphic to the typical fiber of E. Then a covariant derivative VE on E
naturally induces a covariant derivative on L ( Fa , E), again denoted by and defined

by (~EW)(w) = ~E (W(w)) where w E Fo and W is a section of L(Fa, E).
If X is an M-valued continuous semimartingale and a is a section of T* M, we

denote by the Stratonovich integral of a along X, and by f o ( a, dV X ) the Itð
integral. Recall that X is a ~-martingale if and only if, for every a as above, fa (a, dV X )
is a local martingale. In local coordinates, we have

(a~ b X ) 

and

a d° = (dXi + 1 ri X 
where r k are the Christoffel symbols of V. Given a covariant derivative ~E on E, the
parallel transport in E along X is the L(Exo, E)-valued semimartingale satisfying

= idEx0 and = 

where he : TeL(Exo, E), e E E) denotes the horizontal lift asso-
ciated to ~ E . Note that //o E L (E x , .

Let L be a second order generator on M, N be another manifold endowed with a
connection We say that a smooth map u : (M, L) - (N, VN) is harmonic if
u(X) is a ~N-martingale for every diffusion X in M with generator L.

2. COMPLETE LIFTS TO TANGENT BUNDLES

Let M be a manifold equipped with a connection V. In this section we recall some
facts for the complete lift of connections to the tangent bundle of M, the local charac-
teristics of TM-valued semimartingales and the horizontal TM-valued martingales. In
particular we describe the links between complete lift and derivation. We refer to [19]
for the geometric objects.

For a smooth function f on M, the one-form df can be considered as a function on
T M. This function is called the complete lift of f and denoted by Every vector field
A E r (T M ) on M induces a vector field Ac E r (T T M ) on T M which is characterized
by the property AC(fC) = and called the complete lift of A. It is shown in [19]
that the formula = ( ~ AB)C, where A, B E r(T M), defines a connection ~ ~
on TM, called the complete lift of V.

Let w E TT M. There exists a smooth path t H- u(t) E Tx(t)M, where x(t) _
~r(~(t)), such that w = i~(0). We say that w is horizontal if = 0 (note that this
definition differs from the definition in [19] when the connection has torsion). Every
vector splits into a horizontal and a vertical part, and for u E Tz M we denote by hu
(resp. vu) the horizontal (resp. vertical) lift TuTM.

If X is an M-valued semimartingale, the deformed parallel translation along X (also
called Dohrn-Guerra transport or geodesic transport in [16]), denoted by is a linear
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map Txo TXt M such that t N Oo,t is a semimartingale and solution to the Ito
equation 

’

(2.1) = idTx0M, d~c03980,t = (d°Xt)
(here D~ is considered as a connection on T M)).

The TM-valued continuous ~c-martingales were first considered by Meyer in [16],
in the case where D is torsion-free. He obtained the following characterization:
Theorem 2.1. Assume that D is torsion-free. Let J be a T M-valued semimartingale
with projection X. . Then J is a ~c-martingale if and only if

(i) X is a ~-martingale, and
(ii) 40,1 J is a TXo M-valued local martingale.
Now we investigate the relations between complete lift and derivation. Let N be

another manifold equipped with a connection, also denoted D, and let e be a smooth
section of T*M ® TN over M x N (i.e., e(z, y) is a linear map TzM -~ TyN for
(x, y) E M x N). The following result has been proved in [3] :
Theorem 2.2. Let X (a) be afamilyof M -valuedsemimartingales which is C1 in a E I
with respect to the topology of semimartingales, where I is some open interval in I~,
and let Yo (a) be a family of N-valued random variables, Cl in a E I with respect to
the topology of convergence in probability.

Then the solution Y(a), starting at Y4 (a), to

dVY(a) = e(X (a), Y(a)) dV X(a)
is C1 in a with respect to the topology of semimartingales, its derivative aY(a) starts
from aYo (a) and is solution to -

= 

where e’ is determined by taking for X a family of smooth deterministic paths,
Note that in [3] the topology of semimartingales is defined on processes with random

lifetime.

Taking as a special case the antidevelopment Z(a) = .a~(X(a)) of X (a),

Z(a) = Ilo,e (a) d°X8(a)
where //o,t(a) is the parallel transport along X(a), the following corollary has been
obtained:

Corollary 2.3. (i) If a H X (a) is C1 in the topology of semimartingales, then
(2.2) a,r~(X (a)) = ,

where is the antidevelopment with respect to D~ and s M : TT M -~ TT M denotes
the canonical involution (see below before Theorem 3.1 for the precise definition).

(ii) A semimartingale J with values in T M is a ~c-martingale if and only if it is of
the form 8X (0) where a H- X (a) is a family of ~-martingales, C1 in the topology of
semimartingales.

Corollary 2.3 (ii) gives an interpretation of ~c-martingales as stochastic Jacobi fields.
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3. DEFORMED ANTIDEVELOPMENT

In this section the manifold M is assumed to be equipped with a torsion-free connec-
tion ~. Let X be an M-valued semimartingale. Define the deformed antidevelopment
of X as the TXo M-valued semimartingale

~= ~p~8 
where is the deformed parallel translation along X as defined in Section 2. Note
that by [ 12) Lemma (8.24), the It8 integral can be replaced by a Stratonovich integral.
In this section we show that Eq. (2.2) remains true when antidevelopments are replaced
by deformed antidevelopments.
We first collect some notations. Let m be the dimension of M.
As in [2], for a manifold F, let s F : TTF - TTF be the canonical isomorphism

described as follows: if v = ~a~tx(t, a) for some smooth map (t, a) H x(t, a) E F,
then sF (v) = at8ax(t, a). Denote by L(F) the frame bundle over F. ,
A map : T L(M) --~ L(TM) is given as follows: let W = u(o) E T L(M) for

some smooth curve a H u(a) E L(M) and v = b(o) E TRm = R2m for some smooth
curve a H b(a) E then

= sM ((~b),(o)) .
The map will be denoted by 2m. Further let

. if be the canonical projection L(T M) --~ T M,

. c~ (resp. the connection form associated with ~ (resp. ~~), ,

. 03B8 E r(T*L(M) ® (resp. 03B8c E r(T*L(TM) ® the canonical 1-form,

. h (resp. h~) the horizontal lift associated with 00FF’ (resp. 

. G = GL(m, and P = L(M). .

Theorem 3.1. Let I be an open subset of (X(a))aEI be a C1-family of continuous
semimartingales on M with infinite lifetime, and let eo, (a) be the deformed parallel
translation along X (a). Let a Uo(a) E be C1 in probability, and let Ut (a) =

o Uo(a).
(i) Then a H eo, (a) is C1 in the topology of semimartingales, and

:= o 

is the deformed parallel translation along T X (a) with respect to ~~.
(ii) lJZ(a) = def(X(a)) is the deformed antidevelopment of X(a), then a H Z(a)

is C1 in the topology of semimartingales, and for v E T I, denoting by (v) )
the deformed antidevelopment of T X (v) with respect to the complete lift ~~ of ~, we
get

- 

(iii) Let J = TX; define : TX0 N ~ NX.N by

= 
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and ~JZ : TX0N ~ TX0N by

Then

~JZ = 0398-10,.J - J0 - 00398-10,.(~J03980,.) dZ.

Proof. We need the following relations which have been established in [2] Lemma 2.6 :

(3.1) = o SG o Tw o Sp,

(3.2) ~M~~ = T ~9 o sP,

(3.3) 2M h~ = o Sp o T h o SM.

We are now ready to prove the theorem. For (i) and (ii), we may follow the proof of
Theorem 3.1 in [2); the difference is that Stratonovich differentials are replaced by Itð
differentials, and the crucial result for differentiation with respect to a parameter is now
Theorem 2. 2.

(i) Let U~ = By Eq. (2.1), it is sufficient to show that U~ is above T X and
U~ is horizontal or equivalently w~ U~) = 0. To see the first point we write

For the second point, using the Jacobi field characterization (~c-geodesics are infinites-
imal variations of i7-geodesics), it is first of all easy to check that zM sends geodesics
in TL(M) to geodesics in L(T M), if both manifolds are endowed with the complete
lift of the complete lift of the connection on M, which is denoted indifferently by 
As a consequence, we have

(3.4) = TlMd~ccTU.
Since w U) = 0, we get by differentiation along with Theorem 2.2 (which formally
yields Td~cU = sp o 

o = Tw 0 s p o t

and thus by Eqs. (3.4) and (3.1)
= = Tzm o ~G o Tw o Sp o = ~.

(ii) With the canonical projection T M), -~ (M, v) being affine,
we get = dV X(a). This gives

- = dvX(a).

As a consequence, Z(a) := f ~9 is the deformed antidevelopment of X (a)
into l~m with initial frame Uo (a) . Since by definition of zM

Uc0TZ ~ iM(TU0)(TZ) = sMT(U0Z),
it suffices to verify that

(TZ)v = ZC(v),
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where ZC (v) = f ~9~ UC(v)). But successively Theorem 2.2, (3.2) and (3.4) yield
T d°~ U~ = o sp) = o T 2M) = Uc

which concludes the proof.
(iii) We know from [1] or Eq. (5.7) in Proposition 5.3 below

(3.5) 1 J) = Oo ,. 1 .

By Theorem 2.2 we have in local coordinates

(3.6) ((d~X)i) = (0398i03B1 0 dZ03B1 ) .(d~c J)i = T0398i03B1 

0398i03B1 (dTZ)03B1
.

On the other hand, (ii) yields

(3.7) = 
.

Splitting d( sT Z) into its horizontal and vertical part and then using the expression for
eg , , on vertical vectors given in (3.6), we derive from (3.7)

= (hJo(dZ) + 
= + 

The vertical part of the last equality gives

vJ - 
thus along with Eq. (3.5) we get

Integrating this equation finally gives

~JZ = 0398-10,.J - J0 - 00398-10,.(~J03980,.)dZ
which is the desired relation. D

4. HORIZONTAL LIFTS TO VECTOR BUNDLES

Let M be a manifold equipped with a connection V and let E -~ M be a vector
bundle over M equipped with a covariant derivative DE. We denote by R (resp. RE)
the curvature tensor with respect to V (resp. VE). The tangent bundle TE splits into
HE 3 V E where V E is the vertical bundle and Te03C0|HeE is an isomorphism onto
T03C0(e)M for every e E E. Lethe = He E be the ’/horizontal
lift", and let ve be the vertical lift E~(e) -~ Every sections E r(E) has a canonical
vertical lift sv E r(TE) defined by se = and every vector field X E r(T M)
a horizontal lift X h E r(T E) defined by Xe = he (X,~(e~ ).

The following result is well-known ([11]): :

Proposition 4.1. There exists a unique connection ~h on E, i.e., a covariant derivative
on T E,

r(T E) -~ r(T *E ® T E),
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satisfying the following properties: for all sections r, s E r(E), X, Y E r(TM),
(4.1) 

Proof. The uniqueness is obvious: if t ~ x(t) E M, t  r(t) E fl(t) E I(8,
t ~ XL(t) E t N sl(t) E 1  e  r, are smooth paths defined on B8,
then

oD = 03A3(f’l(t)hr(t)(Xl(t)) +.fe(t) hr(t) ((oD 

and

~hD( l_1 fl (t) ) l=1 (f§ (t) "rt> (Sl(t)) + fl (t) Vrt> ( (v O Sl ) (t) ) ) .
For the existence, we have to verify that if for all t

r r

~ = 0 and Se(t) _ ~,
l=1 i l=1

then
r

(4.2) 03A3(f’l(0)hr(0)(Xl(0)) + fl(0) hr(o) ((V D Xl)(0))) _ 0
and

r

(4.3) ~ (fe(~) vr(o) (ge(~)) + JCO vr(0) lOD SlW y ) = o.
e=i i

But the left hand side of (4.2) is equal to

(VD (.feXe) (0)),
and the left hand side of (4.3) is equal to

vr(0)(~ED( flsl)(0)) ,

hence both terms vanish. 0

The connection Vh will be called the horizontal lift of (V, VE) to E, or simply the
horizontal lift of V if there is a canonical way of deducing V E from V.

Let S be a E-valued semimartingale. The parallel transport V of a vector V =
Xh + r" along St with respect to Vh is given by

(4.4) = hs~ ~~~o,tX ~ 
where is parallel translation along w.r.t. ~ and is parallel translation
along 1r (St) w.r.t. ~E. .

Similarly to [2], Theorem 4.2 and Corollary 4.4, we get
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Theorem 4.2. Let J be a continuous E-valued semimartingale and X = ~r o J.
1) The antidevelopment of J with respect to ~h is given by the formula

(4.5) h = h,lo (.~(X)) //o . 1 J - Jo) . .
2) The semimartingale J is a ~h-martingale if and only if

(i) X = 03C0 o J is a ~-martingale in M, and
(ii) is a local martingale in 

In the special case E = T M we may compare the horizontal lift as defined in
this section, with the complete lift ~~ defined in Section 2. In explicit terms we get for
V,W ~ TpTM, p ~ TM,

(4.6) (~c-~h)(V,W)= vp (R(p,03C0*V)03C0*W + ~03C0*VT(p,03C0*W) + T(v-1pVvert,03C0*W))
where R : r(TM ® TM) - r(End(TM)), resp. T : r(TM ® TM) e r(TM),
is the curvature (resp. torsion) tensor to the connection V on M and vp : 
TpT M thevertical lift. Eq. (4.6) yields the following formula relating the Ito differentials
for a TM-valued semimartingale J with projection 7r(J) = X : :

(4.7) d~cJ = d~h J + 1 2vJ(R(J,dX)dX + ~T(dX,J,dX) + T(DJ,dX))
where DJ = d J) = ((d°h (see Eq. (4.8) below).

Remark 4.3. Covariant derivatives on vector bundles induce covariant derivatives on
tensor products and wedge products in a straightforward way: the parallel transport
obtained is the tensor product, respectively wedge product of the given transports. A
covariant derivative is also canonically induced on dual bundles: the associated parallel
transport is the dual of the inverse parallel transport in the vector bundle. All these

operations yield horizontal connections on tensor and wedge products of vector bundles
and on dual vector bundles.

In the remainder of this section we consider C~ families of E-valued semimartingales
a H J ( a) . We want to find a commutation f ormula f or covariant derivatives with respect
to a and t.

Let be the horizontal lift on TE of the connection Vh on E. As we shall see,
the second part of Theorem 4.2 yields a simple characterization of TE-valued phh-
martingales.

First of all define 1/;: T E -~ E by ~(W ) = for W E TwE, and
let ~r2 be the canonical projection TE - E. Then, by Theorem 4.2, a TE-valued
semimartingale W is a ~hh-martingale if and only if

(i) 03C02 (W) is an E-valued ~h-martingale, and
(ii) ( //o , ) " W is a local martingale.

From Eq. (4.4) we have
= + ~(llo ) 1 (~(u’t))) , .

By Theorem 4.2, condition (i) above implies that X = (1r o ~ri ) (W ) is a B7 -martingale;
hence again by Theorem 4.2 (used twice) conditions (i) and (ii) are equivalent to
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(i) is an E-valued ~h-martingale,
(ii)v 03C8(W) is an E-valued ~h-martingale, and
(ii)h is a TM-valued ~h-martingale,
where V~ in item (ii)h is the horizontal lift of V in TM. As a consequence, we
notice that the maps 7T2: -~ (E,V~),~: 1 - (E,V~) and
7r~: (TE, -~ (TM, are semi-affine, i.e. they are affine with respect to the
symmetrized connections.

If J is an E-valued semimartingale, we define the covariant (It6) derivative of J by
DJ:=~ J). Equivalently, DJ is characterized by the formula
(4.8) = + vj(DJ) .
Note that Eq. (4. 5) yields

(4.9) 

In local coordinates, write V~ as d + A and V as d + r. Since

we have

0394(//E0,.)-1 = (//E0,.)-1A(03B4X,.),
and hence

~(//~~=(//~"~(~-)+~(//~~~(~~~
+~(//~.)"~(~~(~’)).

Thus by Eq. (4.9) we get the following general formula for 

(DJ)" = dJo. + J) + dJ)
~~° ~ °~ 

Substituting dX = dX) in the second term of the r.h.s. then gives
(4.11)

(DJ)" = ~ + 

Taking into account that (DJ)~ - ~ (dX, J) has Suite variation, and replacing
dJ by DJ - A(dX, J) in the third term on the right, Eq. (4.11) finally leads to

(4.12) (DJ)" = ~ + J) + DJ) J). .

Notation 4.4. If a e w(a) 6 E is a C1 path, we denote by ~a03C9 its covariant deriv-
ative: ~a03C9 = = Dw da where = v-1w (wvert) if W ~ T03C9E. Slightly
abusing the notation, we just write ~a003C9 for ~a|a=a0 03C9.

The following theorem describes how covariant derivatives with respect to a and t
commute. We write ~2, ~3) for ~(~2,~3).
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Theorem 4.5. Let I be an open interval in I~, and for a E I let J (a) be a semimartingale
with values in the vector bundle E. Assume that a H- J(a) is C1 in the topology of
semimartingales. Let X(a) = Then

D~aJ = ~aDJ + 

+ RE(dX, ~aX) DJ - 1 2~RE(dX, ~aX, dX) J - 1 2RE(D~aX, dX) J.

Remark 4.6. The Stratonovich version of this equation is

(4.13) DS~aJ = ~aDSJ + 8aX)J

where DS J = , ~ (//o , 1 J). In the particular situation when J is parallel transport
along X, Eq. (4.13) is a consequence of formula (4.7.5) in [ 1 S]. One could prove
Theorem 4. 5 with a Stratonovich to Itð conversion, but we prefer here to give a proof
entirely based on the commutation formula (4.14) below.

Proof, Let ~hc be the complete lift of Dh in T E. We shall prove that the wanted
formula is a consequence of the relation

(4.14) 8J = J)
given by Theorem 2.2 (when applied to Ito integrals as special cases of stochastic dif-
ferential equations) and of formula

(4.1 S)
d~hh~J _ 

- 1 2 V8J ( Rh (8J, dJ) dJ + ~hTh ( dJ, aJ, dJ) + dJ)
which is a consequence of (4.7). Here and in the sequel of the proof, 8 stands for aa,
Rh (resp. Th) is the curvature (resp. torsion) tensor with respect to Dh, and V the
vertical lift from TE to TT E. A straightforward calculation using (4.1) shows that if
Ai, 1 ~ i  3 are vectors in TJTE satisfying ,Ai = h J (vz ) + v J (Az ), then

(4.1b) = hJ(R(vl, + vJ ~

(4.17) = + vJ 

and

(4,18) ~hTh(A1,A2,A3) 
= hJ(~T(v1,v2,v3))

+ vJ (~v1RE(v2, v3)J + RE(v2,v3)A1) .

The relation between d~hh~J and D~aJ is obtained as follows: from ~aJ = 
and the fact that’Ø is semi-affine we get d~h ~aJ = 8J which gives

(4.19) D~aJ = 

One easily verifies that

(4.20) ~ ~ ~ * ~ V = ~
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which allows using Eqs. (4.8) (4.16), (4.17) and (4.18) to calculate the contribution
of the second part of the r.h.s. of (4.15) in the wanted formula. More precisely, this
contribution is seen to be

(4.21) 

when taking into account for the last term in the right that Dh~J projects onto D8X: :

Dh~J = ((//h0,.)-1 ~J)
= llo .d (hJ0//-10,.~X + vJ0 (//E0,.)-1~aJ)
= (hJo d//-10,.~X + vJ0d(//E0,.)-1 ~aJ)
= hJ//0,. d//-10,.~X + d 

1 

= 

Next we calculate ~ o 9* Eqs. (4.14) and (4.8) yield

~ o 9* _ ~ o ~* o s + ~ o ~* ~ s .

We are left to verify that 
_

(4.22) = 

and

(4.23) 03C8  03C8*  s (avJ(DJ)) = ~aDJ
which is easily performed in local coordinates. Summing up the right hand sides of
Eqs. (4.23), (4.22) together with (4.21) yields the claimed formula. D

In the next four examples we illustrate all terms in the formula of Theorem 4.5. .

Example 4.7. . (Variation of parallel translation by a change of connection [5])
Let M be a Riemannian manifold endowed with the Levi-Civita connection 0. Assume
that a  (a) is a C~ family of covariant derivatives on E indexed by a E I where I 
is an open interval in R containing 0. Let ~h(a) be the horizontal lift of (V, ~E(a));
let ~E = DE(0) and ~h = Denote by ~0~E the derivative of a ~ ~E(a) at

a = 0. By definition, is a section of T * M ~ E* ~ E. Now let X be a Brownian
motion on M and W (a) (w) be the parallel transport along X (with respect to DE (a))
of a vector w E Exo independent of a. Finally denote by Da the Itð covariant derivative
with respect to ~E (a) and by D the It6 covariant derivative with respect to ~E. Recall
that in local coordinates, by Eq. (4.11), writing ~E as d + A,
(4.24)
(DW(a))° 

+ 2 + AQ (dX, A(dX, W(a))) - Aa (f(dX, dX), W(a)) ).
Since W(a) is the parallel transport with respect to we have DnW(a) = 0,
hence

(4.25) DW(a) = (D - Da)W(a).
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For brevity, we write W for W(0). Differentiating Eq. (4.24) with the help of (4.25)
yields
(4.26)

= - aoA"(dX,dW) ~- 2 
- ðoAQ(dX, A(dX, W)) - (r(dX, dX),W)).

But DW = 0 implies that dW" + Aa (d° X, W ) has finite variation, and in particular
80AQ(dX, dW) _ -8pA°‘(dX,A(dX,W)).

Hence Eq. (4.26) gives
(4.27)

8o(DW(a))° + 

+ aoA°(dX, A(dX, W)) - Aa(dX, ðoA(dX, W)) + ~0A03B1 (r(dX, dX ), W)) .
Now we replace ~0A03B1 by (ao 0 E) a to get the following intrinsic formula, where ~0 DW
stands again for 

(4.28) °

Since X is a Brownian motion, Eq. (4.28) can be written as

(4.29) ~0DW = -~0~E(d~X,W) + dt

Theothertermsinther.h.s. of the formula
in Theorem 4.5 vanish, hence

(4.30) DVoW = + 

and since VoW projects onto X, by (4.8) it is a ~h-martingale if E Ker d*.

Eq. (4.30) along with (4.8) recovers the following equivalence ([5] Proposition 4.2):
80 ~E E Ker d* if and only if, for every X and W as above, ~0W is a ~h-martingale.
Example 4.8. (Variation of parallel transport induced by a perturbation of the Brownian
motion along the flow of a vector field [5]) Here M is a Riemannian manifold endowed
with the metric g and Levi-Civita connection V, X is an M-valued Brownian motion,
X (a) = where is the flow to a vector field A E r(TM) parameterized
by some open interval I about 0. The connection Vh is fixed and defined as
horizontal lift of where is a covariant derivative on E. For w(a) E 
let W (a)(w(a)) be the parallel transport of w(a) along t r-~ Xt(a), i.e.,

Wo(a)(w(a)) = w(a), ~r (W(a)(w(a))) = X(a), DW(a)(w(a)) = 0.

Let J(a) = W(a)(w(a)) where a ~ w(a) E is Cl. For simplicity, we write
again ~0J for and 80 X for Theorem 4.5 applied at a = 0 gives
(4.31)
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Now fromX(a) = ¢n (X ) we get 8nX (a) = which in turn implies that D80X -
is of finite variation. In particular, since X is a Brownian motion,

On the other hand, denoting by # the canonical isometry induced

by the metric and by b its inverse, a calculation shows that

(dAb)a = -cr(~, A n ~) . "
Consequently, Eq. (4.31) transforms to

(4.32) D~0J = RE(d~X,A(X))J + 1 2(-d*RE(A(X))J + RE((dAb)#)J) dt

where again d* RE (u) = - tr ~RE ( ~ , ~ u) for u E T M. Defining
w(a) = ~W(a)(w(a))~ - W(a) 

and taking into account that DW (a) = 0, Eq. (4.32) yields
(4.33)

D~0W = + 2 + dt.

Since W projects onto X at a = 0, it is a ~h-martingale if and only if

- d* RE(A) + = 0.

Now assume that A is of gradient type (d AD = 0). Then we get

(4.34) dt. °

Moreover Eq. (4.34) yields the following equivalence ([5] Theorem 4.4): ~E is Yang-
Mills (d* RE = 0) if and only if ~0 W is a ~h-martingale for every W as above.

Example 4.9. (Covariant derivative of parallel transport and Yang-Mills connections)
M is now a Riemannian manifold, V is the Levi-Civita connection associated with the
metric, E is endowed with a metric which is preserved by ~E. Suppose X is an M-
valued BM on M with lifetime ~’; //0,. is the parallel transport in T M along X; for
u E Xt(a, u) is the geodesic starting from Xt with speed yfi at

a = 0, i.e., Xt (a, u) = expXt(at / /o,tu). Finally, let Wt (a, u)(.) denote parallel
translation in E along Xt (a, u) : 

’

(4.35) 03C0 (Wt (a, u)) = Xt (a, u), DW (a, u) = 0, Wo (a, u) = idEx0.

Note that W~(a,~)(-) is an isometry under the assumptions above. In terms of the

covariant derivative ~0W of W we consider the following ~ End(Exo))-
valued semimartingale: 

°

End(Exo)
u ~ 

Recall that thus = W-1t (0, In-o u) where

~(0~)=//~.
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Proposition 4.10. The semimartingale W’IDoW has lifetime ~ and satisfies the Ito
equation

(4.36)

d = ~ - dt.

The Riemannian quadratic variation of W-1~0W is given by

(4.37) Svert = 2s ds

where the norm of RE is the Euclidean norm in End E).
The covariant derivative DE is Yang-Mills if and only if for every W as above,

VoW is a local martingale.

Remark 4.11. 1) The factor 2 in ther.h.s. of Eq. (4.37) disappears if one takes Euclidean
norm in L(®2T M, End E) instead of Euclidean norm in 

2) The factor B/~ in Xt (a u) = exp Xt / /o,tu) is introduced merely for scaling
reasons. For instance, in case M = Rm the perturbation is Xt (a u) = X t + atu, and

the factor B/~ ensures Brownian scaling of the perturbed process. Note that in Eq. (4.37)
our scaling convention leads to the additional multiplicative factor s.

Proof of Proposition 4.10. denote the lifetime of X (a, u) which is also the
lifetime of W (a, u). Then ~ ~ ~(a, u) converges almost surely to £ as a tends to 0.
This implies that has lifetime as well. To establish Eq. (4.36) we
compute DV 0 W by means of Theorem 4.5. The only difference to Example 4.8 is that
now , u ) = / /o,tu) = 21 t dt is a term of finite variation, with the

consequence that RE(D8oX, dX )W vanishes. Thus we get

D~0Wt = t Ilo,t) W t - Ilo,t) W t dt.

To obtain Eq. (4.36) it is sufficient to invoke (4.9) which gives

W-1D~0W = d .

Eq. (4.37) follows from Eq. (4.36) along with the fact that //o and W are isometries
and X is a Brownian motion. 

’

For the last assertion we may proceed as in the proof of [5] Theorem 4.4: if VE
is Yang-Mills, then the drift in Eq. (4.36) disappears and is a local martin-

gale. Conversely, if for every W as above W’1 VoW is a local martingale, choosing a
Brownian motion X starting from x e M, we obtain almost surely

Wt = 0 for all t  ~.

Finally, dividing in the left by B/~ and then letting t tend to 0, we get d* RE(x) = 0 as
wanted. D
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Example 4.12. (Asymptotics of the parallel transport along a rescaled Brownian bridge)
Let M be a smooth m-dimensional compact Riemannian manifold with its Levi-Civita
connection i7 and E -~ M be a vector bundle over M endowed with a connec-
tion Let xo E M, u E X (a) = X(a, u) satisfy Xo(a) = expxo (au) and
for t E ~0,1 ~;
(4.38) = aA(Xt (a)) dBt + bt (a) dt
where B is an Revalued BM, A E TM) is such that for all x E M,
A(x)A(x)* = idTxM, and DA(xo) = 0. Note that such a choice for A is always
possible, locally with an orthonormal frame whose covariant derivative vanishes at xo,
and globally with the help of a partition of unity. Finally the drift bt in (4.38) is given
by

(4.39) bt (a) = Xt(a))
where

(4.40) Vt(a, x) = a2 gradx logp(a2(1 - t), x, xo )
and p(t, x, ~ ) is the density at time t of a BM when started at x at time 0. The process
X (a) is arescaled Brownian bridge; more precisely t ~ (a) is a Brownian motion
starting at expxo (au) and conditioned to be at xo at time a2.

In the sequel we keep the notation 8o for 8a a=o and Do for D~ a=o. It is well known
that

(4.41) bt(0) =0 and ~0bt = -1 1 - t~0X.
Differentiating (4.38) with respect to a with the help of Theorem 2.2, taking the covariant
derivative with Eqs. (4.7) and (4.8) gives (since i7 is torsion-free)

(4.42) D~aX = a~~axA(X)dB + A(X)dB + ~ab dt - 1 2R(~aX,dX) dX.

At a = 0, since Xo (a) = expx0 (au) we get aoXo = u and

(4.43) D~0X = A(x0)dB - ~0X 1 - tdt,
hence ao X is a Brownian bridge in the Euclidean space Tzo M, starting at u and ending
up at 0 at time 1. Note that in Eq. (4.43) the covariant differential D~0X is equal to
daoX since X (0) = xp.

Differentiating Eq. (4.42) at a = 0 with the help of Theorem 4.5, since X (0) = xo,
yields

(4.44) D~0~aX = 2~~0XA(x0) dB + dt.

But DA(xo ) = 0, so Eq. (4.44) gives
(4.45) D~0~aX = ~0~ab dt.

On the other hand, a H Xo(a) = expx0(au) is a geodesic, so ~0~aX0 = 0. In fact a
careful investigation of b shows that

(4.46) ~0~abt ~ 0 and ~0~aXt = 0.
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This will be proved in a forthcoming paper, together with the following theorem which
describes the asymptotics in a at a = 0 (up to order three) of the parallel transport in E
along X ( a , u) .

Theorem 4.13. Let u E Tx0M and W(a) = W(a, u) be the parallel transport in E
along X (a, u). Derivatives with respect to a are taken in the topology of semimartin-
gales. The following formutas hold:

(4.4?) Wt (0) = 

(4.48) Do Wt - 0,

t

(4.49) ~0~aWt = / ,

0

and hence ~0~aWt is a martingale,

(4.50)
t . t

~0~a~aWt = 2 / o A(xo) dBs, 8oX8) - (/ o ~0Xs ds. .
We have the following asymptotic expansion at a = 0

a3 * E 4
(4.51) IE[W1 (a) 0,a] = R (u) + 0(a )

where To,a is the parallel transport in E along a ~ expx0 (au). In particular, the
following three assertions are equivalent:

(i) d* RE vanishes at xo
(it) for every u E Txo M, u) is a martingale,
(iii) for every u E T~o M,

(4.52) lE [Wl (a, u) To,a - ] = 0(a4). .
Remark 4.14. 1) Eq. (4.43) shows that formula (4.49) can be rewritten as

(4.53) ~0~aWt = RE(03B4~0Xs, ~0Xs)

which is identical to formula (39) in [4].
Similarly, Eq. (4.50) rewrites as the Stratonovich integral

(4.54) ~0~a~aWt = 2 ~RE(~0Xs, 03B4~0Xs, ~0Xs).

2) In [18] and [6J the authors obtained a condition similar to (4.52), but in their result
the time is not fixed; it is the first exit time of a ball of radius a ~ ~ u ( ( . Here the full terms
of the asymptotic expansion in a are obtained, and the covariant derivative DE is not
required to be compatible with any metric. Theproofis based on successive applications
of Theorem 4.5 together with a careful investigation of the equations obtained. Finally
to derive Eq. (4.52) which involves time 1 where the equations have a singularity, we
use a time-reversal argument and the symmetry of the law of a Brownian bridge.
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5. A GENERAL CLASS OF LIFTS TO VECTOR BUNDLES

Let E be a vector bundle equipped with a horizontal connection Vh . In this section
we investigate connections D~ on E of the following type: for A, B E r(T E), J E E,
let

(5.1) DA B = + 

with

(5.2) B~) = v~ ( ~, (~* AJ, + ~’ 

where ~ is a smooth section of T * M ® T * M ® End(E) over M and J a smooth
section of E* g) T * M ® E over E (and not over M).

Examples of such connections are given trivially by the horizontal lift itself, and the
complete lift in the case E = T M. In the latter case we have

(5.3) Y)J = R(J, X )Y + (DXT )(J, Y) and J(X, Y) = T(X, Y)
where R and T denote the curvature and the torsion tensor of V (here T is considered
as section of T * M ® T * M ~ T M over M). Other examples will be given in Sections
7 and 8.

Let us consider the three following properties for a connection V’ on E:
(i) V’ - V~ is vertical,

(ii) ( V’ - D~)( ~, B) = 0 if B is vertical (which implies that the flat vector space Ez
is affinely immersed in (E, V’ ) for each x EM).

(iii) (D’ - hJ(Y)) is linear in J for fixed vector fields X, Y E r(T M).
The following result is immediate:

Proposition 5.1. A connection V’ on E is of the form p~ as defined by (5.1)for some
Y as in (5.2), if and only if D’ satisfies (i), (ii) and (iii). -

Note that connections similar to D~ but without torsion have already been studied
in [16].

Let D~‘ be a connection defined by (5.1) and (5.2). An immediate consequence of
Eqs. (5.1) and (5.2) is that the Ito differential of an E-valued semimartingale J satisfies

(5.4) = + + 

where X = 7r(J) and DJt = //E0,td((//E0,t)-1Jt) = v-1J((d~hJ)vert).
If X is an M-valued semimartingale we define the deformed parallel translation along

X as the semimartingale Oo,t with values in Hom(EX0, EXt), solution to

(5.5) eo,o = idEx0, d~03980,t = .

An equivalent definition to (5.5) is given by

(5.6) 03980,0 = idEx0, 03C0(03980,t) = Xt, D03980,t = -1 2R(dX,dX)03980,t .

Note that the term dXt) vanishes since Deo is of finite variation. Also
recall that eo,. is defined via a linear equation and has consequently the same lifetime
as X. 

’ °
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Definition 5.2. A process as defined by Eq. (5.5) is called a horizontal ~-
semimartingale (or a ~-transport in E). It is called a horizontal ~-martingale
if it projects to a V-martingale X on M.

As a generalization of Theorem 2.1, we get the following proposition. The second
part has been proved in [16] for torsion-free connections:

Proposition 5.3. Let J continuous semimartingale with values in E and let X =

7!-(J). 77t~

(5.7) Jt)) .

Consequently, J is a ~-martingale if and only if
(i) X = ~-martingale in M, and

(ii) + ~ / local martingale.

Proof. We only need to establish Eq. (5.7), the rest of the proof is an immediate conse-
quence of it. Setting = we have

d03B80,t = (//E0,t)-1 D03980,t = -1 2 (//E0,t)-1
which gives

~~ l = -~ ~ = ~ 
We get

=M)(//~)~~+~~((//~)’’~) )
= ~0~ ~(~,~)J, + ~ d ((//~)’’ ~)
= 0~ 1 +~ 

1 

As a consequence, since d~h J and d~ J have the same horizontal parts, we get similarly
toEq.(4.8)

Jt)) + 

which is the wanted result. D

Remark 5.4. In most of the considered examples the term ~ vanishes, then condition
(ii) in Proposition 5.3 simplifies. In some situations we confine ourselves by assumption
to connections on E with ifi = 0, in order to make operations on the lifts more natural,
but then (for connections with torsion) our set-up does no longer generalize the notion
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of complete lift in tangent spaces, as defined by Eq. (5.3). In these cases however, the
considered semimartingales J will satisfy DJ(g)cL?= 0, which implies that we have
nevertheless a consistent generalization as long as one stays in this class of processes.
We continue the investigation of V~ by establishing formulas for the stochastic

parallel transport and the antidevelopment. If J is an E-valued semimartingale, let
DS Jt = = //E0,t03B4((//E0,t)-1 Jt) be the vertical part of its Stratonovich
differential, //o~ the parallel transport along J with respect to and 

(resp. the antidevelopment of J with respect to V~ (resp. V~).

Proposition 5.5. Z~ J &#x26;~ ~~ E-valued semimartingale.
(1) The parallel transport //0,t along J is given as follows: For w e TJ0E with

6 TxoM, w~ ~v~

(5.8)

//J0,tw = //h0,tw - vJt (//E0,t t0(//E0,s)-1((DSJs,//0,su) + (03B4Xs,//0,su)Js)) .

(2) The antidevelopment  (J) of J satisfies

~~(J), = 

(/ (~(//~)’’ .

Proof. (1) WemayassumethatJisasmoothdeterministicpathandreplaceStratonovich
differentials by ordinary differentials. Let ~ denote the r.h.s. of (5.8), and let ~ =

Since V~ and V~ coincide on vertical vector Gelds, we have

DD//h0,twvert = 0.

As a consequence, we get
~Dwt

= ~D(//h0,twhor - vJt (//E0,t t0(//E0,s)-1 ((~DJs,us) + (Xs,us)Js)ds)).
But Eqs. (4.4), (5.1) and (5.2) yield

and from (4.4) and the fact that V~ and V~ coincide on vertical vectors we get

(//~/’(//~)~ 
(//~~~(//~)"’ ~

.

Thus = 0 which gives the result.
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(2) We first calculate the inverse parallel transport with respect to D~. Letting
w’ = //o t w, we have

//h0,tw = w’ + vJt (//E0,t t0 (II o) 1 Ilo,Bu) + (03B4X, llo,8u)Je) .
Applying (//o t)-1 on both sides and using formula (4.4) yields with u’ _ ~* w’,

= 
i

+ vJo 0 (II o) _ 1 + ~(~XB, .

Now from the formulas

= and ~.r~~(J)t = 
we get

~ (,s~~(J)t _ 
- ((//o t)~l - (//o,t) 1) aJt .

= vJ0 (t0 (//E0,s)-1 ((DSJs,//0,s//-10,t(03C0*dJt) + (03B4Xs,//0,s//-10,t03C0*03B4Jt)Js))

= vJ0 ( (t0 (//E0,s)-1 ((DSJs,//0,s) + (03B4Xs, //0,s .)Js))03B4(X)t) .

The proof is achieved by integrating the last formula. D

For the remainder of this section we consider connections D~ with vanishing iT and
construct lifts of connections on dual bundles and tensor bundles.

To a given section of T * M ® T * M ® End E, we first define a section of
T * M ® T * M ® End E* by means of the formula

(5.9)

(X, Y)a, J) + Y)J) = 0, X, Y E TzM, J E Ez , a E Ex,
thus (X, Y) _ -(~.E(X, Y))*. Now assume that we have two vector bundles
E and F over the same base M (for different base manifolds, say M and N, first
extend everything canonically to M x N). In addition, assume that sections of
T * M ® T * M ® End E* of T * M ® T * M ® End F* are given. We define a
section of T*M g) T*M (~ End(E g) F) by linearly extending the formula

(5.10) J2) = + J1 @ (~(X, ~)J~
where X, Y E Tz M, Jl E Ez, , J2 E Fz .

These formulas define connections on E*, resp. E ~ F, for simplicity again denoted
by ~~‘, called the dual of the connection on E, resp. the tensor product of the connections
on E and F. Finally, for an M-valued semimartingale X, let resp. 
denote the deformed parallel translations along X on E, E*, resp. E ® F.

Proposition 5.6. (1) eE* = ((OE)-1)* (2) eE0F = eF.
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This result is similar to the results in [16] Sections 5 and 6, but the assumptions are
not the same and the proof is different.

Proof. (1) It is sufficient to prove that

( 5.11 ) D((0398E)-1)* = -1 2E*(dX,dX)((0398E)-1)*.
But Remark 4.3 and formula (5.6) for the covariant derivative of OE give

D((0398E)-1)* = (//E-10,.)*d(((//E-10,.)*)-1 ((0398E)-1)*)
=(//E-10,.)*d((//E0,.)*((0398E)-1)*)
= (//E-10,.)*d((0398E)-1//E0,.)

*

- 2 1 (Ilo,. E -1 ) * (( oE ) -1~E ( dX ~ dX )Ilo,.) E *
= 1 2(//E-10,.)*(//E0,.)*(E(dX,dX))*((0398E)-1*
= -1 2E*(dX, dX) ((0398E)-1 )*

which is the desired relation.

(2) The result immediately follows from the relation

D (OE ® eF) = eF + ® D0398F

which is established by means of Remark 4.3. There is no bracket since by Eq. (5.6),
(//o ,)-1 eE is of finite variation. D

If there is no danger of confusion, we denote the sections and 

without differentiation by the same symbol 9.
For a Riemannian manifold M, let 9 = 9E* be the section of T * M ® T * M ®

End(E*) defined in (5.9). Setting tr ~, = ~~ 1 ~,(e~, ei), where (ez)1im is a local
section of the orthonormal frame bundle over M, we define the &#x26;i-Laplacian as

(5.12) := D + tr ~.,

where D := tr o pE* ) is the horizontal Laplacian on forms.
Let Oo denote the B7.5’ -transport on E along a semimartingale X. We continue to

assume that J vanishes.

Proposition 5.7. Assume that (M, ~) is a Riemannian manifold equipped with the Levi-
Civita connection and let X be an M-valued Brownian motion. For every e E the

restriction of the generator of //E0,te (resp. to sections of E* is 2 D (resp. 1 20394).
Proof. The parallel translation satisfies the equation
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which can be rewritten locally as
m

d~h//E0,t £ ehi ( / 
where (e; ) i ;m is a local section of the orthonormal frame bundle over M and the pro-
cesses Bi are real-valued Brownian motions. The Stratonovich version of this equation
is

03B4//E0,t = ehi(//E0,t iB§ - ) dt
;= i ;= i

Hence //E0,t is seen to be a diffusion with generator

1 2 (( ehi)2 - ~hehiehi ) _ 1 2 ( )2 h) .

But if a is a section of E* , u a section of TM with horizontal lift uh, s a section of E
with vertical lift s" , and r a section of E, then

(5, 13) = (V5°" a, r) and s" (a) (r) = (a, s).
The second equality inEq. (5, 13) is obvious. Let us explain the first equality: ift e r(t)
is C1 with r(0) = ro e Ex0 and f(0) = then

= d dt|t=003B1(r(t)) = «, ro) + («zo> , r) = «, ro).
The first equation of (5 , 1 3 ) then gives the result for the generator of l e.

On the other hand, by Eqs. (5 . 5), (5 . 1 ) (5 . 2), and with the same calculation as before,
03980,te has generator 

1 2

((e hi )2 - (~eiei )h) - 
1 2
(tr )v.

The second part of (5, 1 3) with s = tr £Q(r’ ) gives

(tr£Q(r’)) 
" 

(a) (r) = (a, tr £Q(r’) ) = - (tr £#a, r’) .
This combined with the s ame argument as before for the horizontal part gives the claim
for the generator of 03980,te. D

As a consequence, we have the following result.

Theorem 5.8. Let M be a Riemannian manifold with the Levi-Civita connection V
and Jr : E - M a vector bundle equipped with a covariant derivative VE. Let
a : [0 , T] x M - E* be a smooth solution to the heat equation § a = ) 7hen

a(T - t, Xt), 0  t  T,

is a ~-martingale in E* for any Brownian motion X on M.
1n particular, a differential form a e r(E* ) is harmonic (I.e. A’a = 0) if and only

if a(X) is a V’ -martingale for any Brownian motion X in M.
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Proof. This is a direct consequence of Proposition 5.7 which gives the generator of Oo
and Proposition 5.6 which characterizes ~~°-transports in E*, together with Proposi-
tion 5.3 which characterizes martingales. 0

Identifying (E* ) * with E and using again Proposition 5.6 gives immediately the
following result:

Corollary 5.9. Let M be a Riemannian manifold with the Levi-Civita connection ~
and 7r: : E --~ M a vector bundle equipped with a covariant derivative Let

a: : [0, T] x M --~ E be a smooth solution to the heat equation = z ~~a. Then
a(T-t~Xt)~ , 

is a ~-martingale in E for any Brownian motion X on M.

6. COMPLETE LIFTS TO COTANGENT BUNDLES

Let (M, V) be a manifold endowed with a torsion-free connection V. On T*M
consider the induced dual covariant derivative, as in Remark 4.3. In this situation

Proposition 4.1 gives rise to a horizontal connection on T * M, i.e, a covariant

derivative on TT * M . .

In [19] the authors introduce a connection on T* M which we denote here by ~b and
which they call the complete lift of ~: by definition it is the Levi-Civita connection for
the pseudo-Riemannian metric gb on T*M given by

ds2 = 2dxi(dpi - 

where (xi, pi) are the local coordinates. This pseudo-Riemannian metric gb is alterna-
tively described as

gb(XC, Y~) = + X, Y E r(TM),

Here Xc, yc E r(TT* M ) denote the complete lifts of X, Y, and X v E M ),
X v (a) = the vertical lift of X, see [19], chapt. VII for details.

Define the section E r(T* M ® T * M ® End (T M ) ) by the formula

(6.1) Y)J = R(J, X)Y, X, Y, J E TzM.

Recall that ~ is associated with the complete lift V~ of V in TM. .
A calculation shows that for every V, W E r(TT * M), p E T* M,

(6.2) = ~y W + vp (~p, 
(see for instance [19], chapt. VIII; in [19], the authors define Vh* by means of (6.2)
and prove then the relations in Proposition 4.1). Hence ~b is a connection of the type
~ ~, as defined in Section 5, with

(6.3) B«) = v« ((’.(~*Aa~ ~*Ba))* a) ~ A, B E T«T*M.

qb does not coincide with the adjoint of as in Section 5. Indeed, the adjoint of ~~
is ~~’~‘~ with,9 as in (6.3). The adjoint of will also be called the complete lift of
i7 in T* M, and denoted by ~~ when there is no risk of confusion.

In the case where (M, g) is a Riemannian manifold the Levi-Civita connection

associated with the metric g, the complete lift ~~ of V on TM is the Levi-Civita
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connection associated with the complete lift gC on T M of g (see [19], gC is in fact a
pseudo-metric). In this situation, it is easily proved that the map
(6.4) b (TM,gC) -~ u e g(u, . )
is an isometry.

Proposition 6.1. Let V be the Levi-Civita connection on a Riemannian manifold M.
T’hen a T M-valued continuous semimartingale J is a ~c-martingale if and only if the
T* M-valued process Jb is a Db -martingale.

Proof. This is a consequence of the fact that b is an isometry. One can also give a proof
based on symmetry relations satisfied by the curvature tensor. Let J be a TM-valued
semimartingale such that X = x(J) is a V-martingale. Then by Eqs. (4.5) and (4.6),
J is a ~c-martingale if and only if for every u E Txo M

is a local martingale. But since //o,t is an isometry, (6.5) may also be written as

and using the relation (R(A, B)C, D) = (R(D, C)B, A) , this writes

(Jbt//0,t,u) + 1 2 t0 (Jb,R(//0,su,dXs)dXs).
Hence (6.5) is a local martingale for all u if and only if

Jt//0,t + 1 2 t0 
(Jb ,R(//0,s,dXs)dXs)

is a local martingale, or if and only if Jb is a VP martingale. This achieves the proof. D

7. COMPLETE LIFTS TO EXTERIOR BUNDLES

In this section (M, V) is a manifold endowed with a connection possibly with torsion
T. We denote by V the adjoint connection given by V - V = T and by R the associated
curvature tensor. Let E = APT M. On E there is a covariant derivative inherited from
V, and hence, by Proposition 4.1, a covariant derivative Vh on TE. Let us define a
section E f(T* M ® T * M ® End E) as the linear extension of

I1... I1 vp
p

= ~ vl ~ ... ~ (R(vk, u)w + I1...11 vp
k=1 I

- ~ vl)u A w A vl I1... A I1... A vk I1... A vp

for ... , vp E Tz M. Note that in case p = I this formula coincides with the ~.
in (5.3). Also note that one has to verify that this definition makes sense, i.e. that the
right hand side vanishes when vi = i ~ ~. .
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Definition 7.1. The complete lift of V to E, denoted by V’c) is the connection ~~‘ on
E associated with ~, _ ~,~, as defined above, and f7 = 0.

The complete lift of V to E*, again denoted by is the connection ~~ on E*
associated with ~, E~ _ _ ( ~, E)*, also denoted by ~,, and with ~’ = 0.

If V is torsion-free, then the above definition extends the definitions forp = 1 given
in Sections 2 and 6.

Lemma 7.2. Assume V is torsion-free. If u, w, v1, ... , vp E TzM and a E E*x, then
~, (~c, w)a E Ex satisfies

p

(7.1) vp) _ , vk_l, w, vk+1, ... ,1Jp).
k=1 I

Note that (7.1) gives in the particular case a = al A ... A ap
p

vp) _ - ~ 
k,~=1 ~ 

vp).

Proo f. Since by definition

(~,(~,w)a, (y, ... Vp)) _ "(a, ... A vp)),
it is sufficient to prove that

p

(7.2) I1... ~ vp = ~ R(Vk,U) ... A w ~ ...11 vp .
k=1 I

But by developing the right hand side of (7.2), isolating the terms with and

putting together terms with the same pair of indices, we obtain

p p
(vi A ... A w A... A vp) = A... A vp

k-1 I k=1 I

- L A w A A ...

... A ... A vp .

The result follows by using the Bianchi identity

R(Vk, U)Vi - U)Vk = R(Vk, vl)u.
CJ

As a consequence of Lemma 7.2 and [9] Proposition 8.7, we can state:

Corollary 7.3. Assume that M is a Riemannian manifold equipped with its Levi-Civita
connection. Let E = AT M and  be as in (7.1). Let 0394 := -(d+d*)2 be the Laplacian
on r(E*), and let = [] + tr be the -Laplacian on r(E*) defined in Section 5.
7hen

(7.3) ~ = 
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Remark 7.4. Under the assumptions of Corollary 7.3 the following formula holds:

(u, w)v1 A ... A vp
p

= ~ 1~1 A ... A R( vk, u)w A ... A vp
k=1 I

- L A w A vi A ... A ... A ... A vp.

The second term on the right says that ~ is not a tensor product as defined in for-
mula (5.10). In other words, the tensor product of deformed parallel transports in TM
is not the deformed parallel transport associated with A. This has been pointed out
in [16] p. 196.

Let E = APT M. For every x E M, let X(x) be an M-valued semimartingale with
starting point x. Assume that X is differentiable with respect to x and denote by T X
the derivative of X. We want to calculate the drift of the process T X ̂p with respect
to the connection ~~, and to find sufficient conditions under which the fact that X is a
V-martingale implies that TXp is a ~c-martingale. We have

Ap

P

= 03A3TX1 A ... A DTXk A ... A rXp
k=1 I

+ L TX1 A ... A DTXl A ... A DTXk A ... A TXp.

Consider the particular case when X solves an equation of the type
= A(X) dB + b(X) dt

where B is an Rr-valued Brownian motion, A E TM), b E r(TM). Differen-
tiating with the help of Theorem 2.2 yields

= AC(T X) dB + bC(T X) dt
or with Eq. (5.3)

= AC(T X) dB + bC(T X) dt

- 1 2vTX(R(TX,dX)dX + .

Projecting onto the vertical part gives

DTX = TXA dB + TXb dt
(7.4) 

- 1 2(R(T X, dX) + ~T(dX,TX,dX) + T(DTX,dX)) dt.

Definition 7.5. We say that (A, V) satisfies the condition (LJW) if ImA is a subbundle
of TM and the restriction of the adjoint connection V to sections of ImA is the Le Jan-
Watanabe covariant derivative induced by A.
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Recall that the Le Jan-Watanabe covariant derivative on ImA is characterized
as follows (see [10]): if Z E r(ImA), vo e then

where the adjoint A* is defined with respect to an induced metric on ImA which makes
each A* (x) an isometric embedding into l~r , The Le Jan-Watanabe covariant derivative
satisfies the property: if x E M, e E E TzM, then D~’A( ~ )e = 0
([10] Proposition 1.1.1).

Note that our notations are not the same as in [10]. Our V is the adjoint of an
extension, as in their Proposition 1.3.1, of their V. Hence our restriction of V to ImA
is their V.

The most important example is given by gradient Brownian systems: M is a Rie-
mannian manifold isometrically immersed in A(x) the orthogonal projection of jRr
to Tz M and the Levi-Civita connection ([10] Example 1B).

Note that given A such that ImA is a subbundle of T M, the existence of V such that

(A, V) satisfies (LJW) is guaranteed by [10] Proposition 1.3.1.
Assume that (A, V) satisfies (UW). Let x E M. Choosing an orthonormal basis

of Rr which splits into an orthonormal basis of ker A(x) and an orthonormal basis of

(ker A(x))1, we see that trDA(x) ® A(x) = 0. But with the expression of DTX in
Eq. (7.4) we get DT X ® dX = ® A(X ) dt; we conclude that

(7.5) DTX ® dX = 0.

As a consequence, using the relation

R(v, u)u + (DuT) (v, u) = R(v, u)u, u, v E TzM,

and again Eq. (7.4), we get

DTX = dB + dt - -11 (TX,Ai(X))Ai(X) dt,
2 i=1

and this gives
p

= 03A3 TX1 n ... n TXk A(X ) dB n ... n TXp
k=l

p

+ ... n dt n ... n TXp

+ TXl n .. , n (-1 2 R (TXk, Ai (X))Ai (X) dt) n ... n TXp
+ ~ ~ A A TXl A ...

i=1

... A TXl A ... A TXk A ... A TXp dt.

The displayed equation in the next proposition already appears in the proof of Theo-
rem 3.3.8 in [10].
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Proposition 7.6. Assume that (A, V) satisfies Then

p

D(TXp) = 03A3TX1 n ... n dB n ... n TXp
k=1 I

p

+ TX1 A ... A A ... A TXp

- 1 2(Ai(X),Ai(X))TX039Bp dt.

Z i=1
In particular, if X is a V’ -martingale, then is a ~c-martingale.

Proof For the claimed equation, considering the formula just before Proposition 7.6
and the definition it is sufficient to prove that for all x e M,ui Tx M

m m

(7.6) 03A3 R(vl, v2)Aj n Aj = 2 03A3v1Aj n 
j=i j=1 i

which is a consequence of [10], Corollary C.5. If X is a V-martingale, then b = 0, and
we have by (5.4) and (4.8)

+ 

= 

p

= + ~ TXi A ... A dB n ... n TXp
k=1

which shows that is a ~c-martingale. p

8. COMPLETE LIFTS TO DIRAC BUNDLES

Let D be the Dirac operator on the spinor bundle F over a spin manifold M and
- D2 = D + R the Weitzenböck decomposition of its square. We want to define a
natural connection V~ on F, such that a section ("spinor field") a E r(F) is harmonic
(i.e., a E ker D2 ) if and only if a(X) is a ~c-martingale for any Brownian motion X
in M.

More generally, we shall deal with the following context.

Definition 8.1. Let M be a Riemannian manifold with Levi-Civita connection and
7T: : E ~ M a Riemannian vector bundle over M, endowed with a Riemannian connec-
tion V’E:

X (a, b) = b~ + (a, a, b E r(E), X E r(TM).
Then E is said to be a Dirac bundle if it carries a "Clifford action"

(8.1) c E r(Hom(TM ® E,E)), ,
written as v a := c(v ® a) E r(E) for v E r(TM) and a E r(E), such that
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(i) (v a, b) = - (a, v . b),
(ii) (v a, v . b~ = ~v~2 (a, b) ,
(iii) V~(~ . a) = (V~) . a + v 

for all v E r(TM) and a, b E r(E). The operator

(8.2) D: 0393(E) 0393(T*M ~ E) 0393(TM ~ E) 0393(E)
is called Dirac operator of E and A = -D’z its Laplacian.

Definition 8.1 is equivalent to the one in [13], p. 114. Note that if, for v E Tx M, the
linear map c(v ~ -): Ex  Ex is denoted by c(v), then conditions (i) and (ii) amount
to saying c(v)* = -c(v) and c(v)c(w) + c(w)c(v) _ -2(v, w) id.

For such generalized Laplacians A there is a Lichnerowicz-Weitzenbock decompo-
sition

(8.3) 0394a = []a + Ra

where in terms of the curvature tensor Rx: TxM x End(Ex): :

(8.4) 7Z~a=-1 2 e~.e~.R s ~ ej)a
i, j

for any orthonormal basis (ei,..., en) of TxM (see [13], p.155).

Example 8.2. (a) (the de Rham operator) The exterior bundle E = M of a Rie-
mannian manifold with Clifford action vb La and Levi-Civita connection
is a Dirac bundle, where by definition vb = (v , . ) . The associated Dirac operator is
D = d + d* and A = -D2 = -(dd* + d* d) is the de Rham-Hodge Laplacian on E.

(b) (the Dirac operator on a spin manifold) If M is an even-dimensional spin man-
ifold, its spinor bundle F with the Levi-Civita connection is a Dirac bundle. The asso-
ciated Dirac operator D is referred to as the Dirac operator on M.

(c) (the Dirac operator of a twisted spinor bundle) The spinor bundle F is tensored
with an auxiliary Riemannian/hermitian vector bundle ~ over M to give a Dirac operator
of the form

D: : r(F®~) °~r(T*M®F®~) c-~ r(F®~),
Again the identification in the middle is given by the metric.

(d) (the ~-operator on a Kähler manifold) e.g. [7], p.135.
Given the situation of Definition 8. l, we now investigate connections V~ on TE such

that a(X) is a ~c-martingale for a E F(E) harmonic and X a Brownian motion on M.
Such connections will be possible candidates for the complete lift V~ of V.

First of all note that one may modify Definition 7.1 by means of the Weitzenböck
term (8.4) as follows: For u, v E TxM and a E Ex let

(8.5) . Rx(u, ej )a E E~
j

and define for Y E r(TE), X E TaE, a E E,

(8.6) ~cXY = ~hXY + va ((03C0*X,03C0*Y)a) .
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This obviously gives a connection O~ with the wanted properties which however does
not coincide with the connections on exterior bundles as defined in Section 7, when
the latter are considered as special instances of Clifford bundles. In addition, there is a
plenty of other connections satisfying the same conditions.

The particular case of exterior bundles already suggests that in case the Dirac bundle
E inherits a natural graduation or filtration, the connection should respect this additional
structure.

Coming back to the case of the exterior bundle E = AT* M of Example (8.2) (a), let
c(v) = Cv - Av where Cva = vb A a, Ava = vb L a for v E TzM, a E Ez, and let
prP: E --~ E denote the projection onto EP := APT * M . Setting

c+ (v) I Ep = 
= 

we get c+ (v) = Cv and c’ (v) _ -Av. Moreover, it is straightforward to check that by
defining

(8.7) v)a = - L c’ (v) R(u, E Ex,
i

we get

(8.8) (u, v) = ~. (u, v) + R(u, v)

where @! is defined by Eq. (7.1). Taking into account the antisymmetry of the curvature
tensor R(u, v), we see that Eqs. (8.6) and (8.7) define a connection V~ on the exterior
bundle E = AT* M which coincides up to torsion with the one defined in Section 7. In

particular, both connections yield the same class of martingales.

9. MARTINGALES IN THE TANGENT SPACE RELATED TO HARMONIC MAPS

Let L = t Az + Ao be a differential operator on a manifold M with a connec-
tion. Assume that for every x e M, one can choose r and the vector fields Ao,..., Ar
in such a way that for all i > 1, either = 0 or = 0 (this is a local
property). Note this is possible for instance when M is a Riemannian manifold, V is
the Levi-Civita connection and L = z ~ + b, or more generally, when (A, V) satisfies
(LJW) (just make a rotation, depending on x, of the orthonormal basis in 1~r ).

Let N be another manifold with a connection also denoted by V. For T > 0 let
u : : M x [0, T] - N be a smooth solution to the heat equation, i.e. u(t - . , , X , ) is
an N-valued ~-martingale for every diffusion X on M with generator L and every
t E ] 0, T].

Let be a diffusion with generator L, satisfying Xo(x) = x and

~X (x) = A(X (x)) ~B + Ao(X(x)) dt,

or in the Itð form

(9.1) = A(X (x)) dB + b(X (x)) dt

with b = Ao + 2 ~z 1 Here B is a Brownian motion taking values in 
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Differentiating Eq. (9.1) along with Theorem 2.2 gives

(9.2) = ~(T~)) dB + 

for every u ~ ~M, where T~ is a diffusion with generator

L~D~+~-
t=l I

(Note that Z~ depends on the particular choice for ~, not just on the operator L.)
Let Tu denote the derivative of u withrespect to the second, and ~u the derivative with

respect to the first variable. We know by Corollary 2.3 that ~ -~ 7B~ - ~ 
is a ~c-martingale in TN.

Let 0~ be a TM)-valued diffusion satisfying 0~ = and

(9.3) = ~~(0~) dB + ~(0~) ~.

By means of Eq. (4.7) and relation (0398M,Ai)Ai = R(0398)M,Ai)Ai+0394T(Ai,0398M,Ai),
along with the fact that D0398M has Suite variation, Eq. (9.3) can be rewritten as

~0~=~(e~)dB+~(0~)~--~M ~R(e~,~)~ .Bt=i I /

But since

~ = ~ + 7(V ~) + ~ E + 
t=i 

’

where b)(w) = for w e TM, we conclude that 0398M is a diffusion with
generator

~ ~= ~ + ~ - ~ E~~’’~-)~) + ~-
t=i t=i

Since Eq. (9.3) and bc == bh + &#x26;) imply

= + ~e~(.) (~eM(.)6) ~,

we see that L~ depends on L and V, but not on particular choice for A (Recall that
&#x26; is the first order part of L with respect to the connection V.)

Proposition 9.1. The process Tu(t - ., X)(0398M) is a 7W.
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Proof. In the following calculation we will use the identity Ah = The

geometric Itð equation for TB~ - ., X)(eM) writes

= - ,x),d~e~) + - ,~)(d~e~ ~ dV eM)
- 8Tu(t -. ,X) ds

= (rr~ -., + ~) - 9r~ -., X) ds
+ -., x) dB ~ dB) .

+ -. dB 0 dB)
- 8Tu(t - . , X) ds
- dB 0 ~M dB)
+ X) ~4) dB 0 ~M (VoM A) dB)

where ~ means again equality modulo differentials of local martingales. The sum of
the first three lines of the r.h.s. vanishes by means of Eq. (9.2) since Tt~ - ., X)(T X)
is a ~c-martingale for every X as above, and therefore the geometric Itð formula for
TuTX yields : for all w E Tz M,

The last line of the r.h.s. vanishes since Tu is linear on the fibers, V~ is flat on the fibers,
and hence 1~2) = 0 if t~i and ~2 are vertical. To prove that the fourth line
of the r.h.s. vanishes, we first remark that (since 0~ is a diffusion)

for some continuous map F which does not depend on the choice of A But the calcu-
lation above gives

/ r B

-~cTTu(t -.,X) (Ahi(0398M) ~ v0398M(0398MAi))) dt

where the right hand side is continuous in Consequently,
/ r B

F(.,w) = -~cTTu(t - . ,x) (  (Ahi(x) ~ vw(wAi(x))) )
for all x e M and w 6 Tz M. Now choosing A such that for all z ~ 1, either Ai (x) = 0
or = 0, we see that F( . , t~) = 0, and as a conclusion, that T~(~ 2014 ., is

a ~c-martingale. D
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Proposition 9.1 provides an alternative to the method of filtering out redundant noise,
as discussed in [10]. Recall that the condition on the connection described at the begin-
ning of the section is satisfied if L = t + Ao and (A, V) satisfies condition
(LJW), up to a rotation of the orthonormal basis in This gives the following result:

Corollary 9.2. Let (A, V) satisfy and

L = 1 2A2i + A0

with Ao = - 1 2 03A3ri=1 ~Ai Ai. Let u : (M, L) ~ (N, V) be a smooth harmonic map.
Assume that the connections i7 in M and N are torsion-free.

7hen Tu : ; (M, L) -~ (T* M g) T N, VC ) is harmonic, where D~ is the tensor product
of the complete lifts of p in T N and T * M.

Remark 9.3. Replacing for instance M by M x R with the product connection V allows
us to differentiate with respect to a parameter. We just have to verify that (A, V) satisfies
(LJW). We conclude that Corollary 9.2 is a generalization to harmonic maps of the fact
that Jacobi fields are ~c-geodesics.

Proof Since Ao = - t (which implies that any diffusion with generator
L is a V-martingale), the term b in (9.1) vanishes. As a consequence, the eM satis-
fying Eq. (9.3) is the canonical ~c-martingale along X. By Propositions 5.3 and 5.6
it is sufficient to prove that is a local martingale, where ~N is the
horizontal ~c-martingale along u(X). But since is a ~c-martingale by
Proposition 9.1, applying again Proposition 5.3 gives the result. D

10. MARTINGALES IN THE EXTERIOR TANGENT BUNDLE RELATED TO
HARMONIC FORMS

Let (M, V) be a manifold endowed with a connection possibly with torsion. Let
E = APTM and let D~ be the complete lift of D to E, as defined in Section 7. Let L
be the generator of an M-valued diffusion process X solving

= A(X) dB,

where A E T M) and B is an Rr -valued Brownian motion. In particular, X is
assumed to be a V-martingale. We are interested in the problem inverse to Proposition
9.1 of Section 9. Given a harmonic p-form a on M, we want to find conditions under
which (a, T X ̂p) is also a local martingale. The following result is a consequence of
[10], Theorem 2.4.2. Again the proof given here relies on Ito’s formula.

Proposition 10.1. Assume that (A, V) satisfies Let e be the horizontal ~c-
martingale in E along X. . Then the generators of e and TX039Bp coincide on the set of
p10rms on M. In particular, if a is a harmonic p10rm on M, i.e., (a, 0) is a local
martingale, then (a, T X ^p) is a local martingale.
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Proof. We only need to prove the first assertion. Since X is a martingale and (A, V)
satisfies by Proposition 7.6, TX039Bp is a ~c-martingale solution to

(10.1) 
+ v ( TX1 039B ... 039B TXk A(X) dB A ... A T X p ) .~=i 

On the other hand, 0 satisfies

(10.2) 

Let L~ be the generator of 0, and let a be a p-form on M. The It8 equation for (c~ e )
writes

(10.3) d(a, e) = + dB ~ dB)

where da is the differential of a considered as a function on Since e is a

~c-martingale, the drift term in Eq. (10.3) equals 1 2~cd03B1(Ah(0398)) dB 0 dB).
But by definition of the generator, the drift term is also equal to dt. As a

consequence, we have for any 03B8 E 039BpTM

(~(9)(.) 0~(~)(.)). .

On the other hand, by means of Eq. (10.1), since TX039Bp is a ~c-martingale, we get the
following consequence of the Ito equation for (a 

= dB ~ dB)

+ dB ~ ~ ~ T~i A ... A dB A ... A 

+ .

Now the first line of the r.h.s. is equal to L~ a dt. The third line vanishes since

a is linear on the fibers, and finally the second line vanishes since by condition 
if e E ))~- then if ~( - )e = 0. We get

dt,

and this says that LV coincides with the generator of TXP on the set of p-forms. D

Note that Proposition 10.1 generalizes Theorem 5.2 in Malliavin [14] from 1-forms
to p-forms.
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