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APPROXIMATING THE FOCK SPACE
WITH THE TOY FOCK SPACE

Stéphane Attal

ABSTRACT . — We show how the toy Fock space can be embedded
into the usual Fock space of quantum stochastic calculus. This embedding gives
rise to a rigorous discrete approximation of the Fock space and its natural
noise operators. We recover the quantum Ito table from the discrete one. We
finally show that the quantum Brownian motion and Poisson process can be
simultaneously approached by quantum Bernoulli random walks.

I. The toy Fock space.

Let us realise a Bernoulli random walk on its canonical space. Let Q =
{0,1}N and F be the o-field generated by finite cylinders. One denotes by v,
the coordinate mapping : v,(w) = wy, for all neN.

Let p € ]0,1[ and ¢ = 1-p. Let p, be the probability measure on (0, F)
which makes the sequence (vy)nen a sequence of independent, identically dis-
tributed Bernoulli random variables with law pé; + gdp. Let E,[ - ] denote
expectation with respect to u,. We have E,[v,] = E,[¥2] = p. Thus the random
variables

Upn =P
Xn= R

satisfy the following:
i) the X,, are independent,
i1) X, takes the value \/q/p with probability p and —+/p/q with probability
q,
ii) Ep[X,] =0and E[X2] = 1.
Let &, be the space L2(Q, F, pp). We define particular elements of &,
by

Xp =1, in the sense Xp(w) = 1 for all wef
Xa=X; X, if A= {i1,...,1in} is any finite subset of N.

Let P;(N) denote the set of finite subsets of N. From i) and iif) above it
is clear {X4 ; A€P;(N)} is an orthonormal set of vectors of .
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PROPOSITION 1. — The family {X4 ; A€P;(N)} is an orthonormal
basis of ®,.

Proof. — We just have to prove that {X4, A€P¢(N)} forms a total set
in <I>,, In the same way as for the X4, define

Vo-—-l
va=v; ooy, for A= {iy,..., 00}

It is sufficient to prove that the set {v4 ; A€P;(N)} is total.

The space (Q,F,pp) can be identified to ([0,1],B([0,1]), /i,) for some
probability measure f,, via the base 2 decomposition of real numbers. Note

that _
m@=un={y i oo

thus v,(w) = 1u,=1. Consequently va(w) = ly;, =11y, =1. Now let f€ 5,,
be such that (f,v4) = O for all A€P;(N). Let I = [k27™,(k + 1)2~"] be a
dyadic interval with k < 2™. The base 2 decomposition of k27" is of the form
(o1,...,00,0,0,...). Thus

/, fW)diy(w) = /{o SOz Tonma, dp(0)

The function 1,,=q, * * * lu,=a, can be clearly written as a linear combination of
the va. Thus [, f dji, = 0. The integral of f vanishes on every dyadic interval,
thus on all intervals. It is now easy to conclude that f = 0. n

We have proved that every element fe 5,, admits a unique decomposition

f= 3 f(A)Xa (1)
AePs(N)
with
I7I2= Y If AP <. 2)
A€P(N)

We can now dgﬁne the toy Fock space. The toy Fock space is the separable
Hilbert space ® whose orthonormal basis is chosen to be indexed by Pf(N). Let
{Xa; AeP; (N)} be this basis. As a consequence there is a natural isomorphism
between & and <I>}3 For each p€]0, 1[, the space <I>,, is called the p-probabilistic
interpretation of ®

The only property that allows to make a difference between & and <I>,,,
or between different <I> s, is the product. Indeed, as <I> isa L? space it admits
a natural product. The way we have chosen the basis of <I> makes the product
being determined by the value of X2, neN.
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PROPOSITION 2. — In &, we have
X:=1+c¢pXp

=42
where ¢p = 5z
Proof.

1 1
X2 = =2 +p%-2pv,) = —(p? + (1-2p)v
n pq(n p pVn) pq(p ( p)n)

1, p’-gp  q-p

= — + (g—»p)v, =1+———+_y

(P (q P)n) - pr= n
=1-22 . %, _ n—P
T T T c,,\/_

~

The product that the p-probabilistic interpretation ;I;p determines in &
is called p-product.

On &, one defines the creation, annihilation and conservation operators
by

af X4 = X auqn)lnga
an X4 = X g (n}lnea
an X4 =Xalnea .

Note that af, a3, a,; are completely determined by
i) their value on 1 and X,,,
it) the fact they act trivialy on X,,, m # n.

What we mean exactly is the following. If H,, denotes the closed subspace
generated by 1 and X, then there exists a natural isomorphism between ® and

@ Hyp (where the countable tensor product is understood to be associated to
neN
the stabilizing sequence (un)nen such that u, = 1 for all n) given by

X419 ®19X;®1® - ®10X;, ®-- if A={i1,...,in}.

The definitions of e, a;;, a3 show that these operators act only on H, and act
as the identity everywhere else. In particular af, commutes with a?, for all n # m
and all
€, n€{+,—,0}. The compositions af,al} are given by the following discrete quan-
tum Ito table.
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PROPOSITION 3. — The products aal, are given by
an
at, ay a, an

at 0 al 0

a, I-aj, 0 a,

ad at 0 al .
Proof. — Straightforward. [ ]
PROPOSITION 4. — The operator M}n of p-multiplication by X, is

given by

My =af +a; + 0, .

Proof.
XnX4 = Xau(n)lnga + Xa(n}(1+ cpXn)lnea
=aIXA+a,‘:XA+c,a:XA. ]

II. The Fock space.

We here give a short presentation of the Fock space and its quantum
stochastic calculus; one can find all details in [Att).

Let P be the set of finite subsets of R*. Then P = |J P, where P, is the

n
set of n-elements subsets of R*. The set P, can be identified to the increasing
simplex ¥, = {0 < ¢; < -:- < t,} of R*. Thus 7, inherits a measured space
structure from the Lebesgue measure on R". This also gives a measure structure
on P if we specify that on Py = {#} we put the measure 3. Elements of P are
often denoted by o, the measure on P is denoted by do. The o-field obtained
this way on P is denoted by F.

The Fock space @ is the space L>(P,F,do). An element f of ® is thus
a measurable function f: P — C such that

wm=Lume<w.

One can define, in the same way, Pjq ) and ®[43) by replacing R* with [a, b} C
R*. There is a natural isomorphism between ®(o ) ® ®(¢,+00 given by h®g > f
where f(c) = h(e N[0,t])g(e N (t,+00[). Define x:€% by

o0 if Jo| #1
X ={Spqte) i o o)
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Then x; belongs to P[o). We even have x¢: — x,€®|,,¢ for all s < t. This last
property allows to define an Ito integral on ®. Indeed, let (g:):>0 be a family
in ® such that

i) t— ||g¢|| is measurable,
i) g1€Ppo, for all ¢,
i) [ gl dt < oo,
then one defines [;* g¢ dx: to be the limit in & of

1 tig1
Z [ Fi.94 ds ® (Xti-n - Xt.‘) (3)
i §

tiv1 — ¢

where P, is the orthogonal projection onto P[4 and {t;, €N} is a partition
of R* which is understood to be refining and to have its diameter tending to

0. Note that 'tT.',.-:Tt.— :““ P,.g, ds belongs to ®[q,), which explains the tensor

product symbol in (3).
We get that [ g¢ dx: is an element of & with

| [T o axd = [ o ae. (@

Let feL?(P,), one can easily define the iterated Ito integral on ®.
L= Fltrse oo ta) dxes e,
0<t1 <++<tn
by iterating the definition of the Ito integral. We put
()= [ 1) dx.

We have the following important representation.

THEOREM 5 ([Att]). — Any element f of ® admits an abstract chaotic
representation

f= /P £(0) dxs

with

11 = [ 17 do
P
and an abstract predictable representation
o0
f=101+ [ Dif axe

with

1A =15 + [ ID.AIP ds
0
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where [D, f](0) = f(o U {s})1,cjo,s[ is well-defined for ds x do almost all (s, ).

Let us now recall the definitions of the creation, annihilation and conser-
vation processes in ®. They are respectively defined by

[ @) = 5~ f(@ ~ {s}), (5)
.5:

l67 f1(0) = /o foU{s)) ds, (6)

63 £)(@) = o N [0,4]] (o) . @)

There is a good common domain to all these operators, namely
D= {fe«b ; / lo) | (o)? do < oo} .
P

We also recall an equivalent definition taken from [A-M], which can be easily
recovered from (5), (6) and (7). Let f = f(@)1 + [;° D¢f dx: be an element of
D. Then P, f = f(0)1 + fot D, f dx, also belongs to D and

t ¢

az-Ptf=/0‘ a-:Daf ch"’/o. P, f dx,, (8)
t ¢

o Pf = /O a;D,f dye + /0 D.f ds, ©)
t t

aSPf = /0 aSD, f dxs + /o D,f dxa. (10)

Finally, let us recall Hudson-Parthasarathy’s quantum Ito table. We give
it under a formal way only, we refer to [H-P] or [A-M] for a rigorous statement.

~ | da} da; dag
daf 0 0 0
day | dt I 0 da;
day | daf 0 day .

III. Embedding the toy Fock space into the Fock space.

Let S={0=ty<t; <---<t, <---} be a partition of R* and §(S) =
sup; |ti+1 — t;| be the diameter of S. For S being fixed, define ®; = &y, 4.}
1€N. We then have ® ~ @ ®; (with respect to the stabilizing sequence (1),,¢N).
ieN
For all i€N, define
X; = Xt.'ix -~ Xt €®;,

v zi+1 - ii
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a- = @41 ~ O

o__ o o
a; =0y, — Gy, »

+ +
+ _ ah.ﬂ — Gy, + . .
a; —-Pll—-—l—on@,-, af =Ion ®;forj#i
i1 — U

where Py is the orthogonal projection onto L*(Py).

PROPOSITION 6. — We have
a‘TX,- =1 a;?X,- =X; a:'X,- =
a;1=0 "’ al1=0 '’ afl=X;

Proof. — Asa; 1=a{l=0itis clear that a; 1 = aj1 = 0. Furthermore,
af 1 = x; thus
a;"l = Pll—————xt“l Xt X,' .

Vi — & -
Furthermore, by (8), (9) and (10) we have

_ 1 _ _ tig1
a; Xi = — (at‘,+1 - a,‘.) /t 1dx:

tiv1 — ti
1 tit1 tit1
=t' ry [/ (a,'—at—'.)ldxt+/ ldt]
1 = Y ti ts
1
=m(0+t5+1 —-t)=1;
i

°ox 1 o o b4 1d
W= tiv1 — (at"“ - a,'.)/t Xt

i

1 tit1 tig1
= [/ (af —ap,) 1 dxe +/ 1 dx,]
t; t;

tiy1 — b
— (Xtips — Xxt:) = Xi 5
ti+1 —- tg i+l ] )
+ 1 + + fit
a X; = s Py (a,i+l - a,‘.) /ta 1 dx:
1 tit1 ti+1  pt
st [ -arae [ [ 10
t0'+1 -t t; t; t;
2 Mg d
= ——P / 1
tirr — i 1) N N Xs GXt

=0.
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Thus the action of the operators a; on the X; is similar to the action
of the corresponding operators on the toy Fock spaces. We are now going to
construct the toy Fock space inside ®.

We are still given a fixed partition S. Define T®(S) to be the space of
f€® which are of the form

f= Y f(A)Xa
A€ (N)

(with [flI*= ¥ |f(A)? < ).
A€P;(N)

E€Py(

The space T®(S) is thus clearly identifiable to the toy Fock space ®;
the operators af, e€{+, —,0}, act on T®(S) exactly in the same way as the
corresponding operators on ®. We have completely embedded the toy Fock
space into the Fock space.

IV. Projections on the toy Fock space.

Let S={0=1t <t <-<t, <: -} be a fixed partition of R*.
The space T®(S) is a closed subspace of ®. We denote by Ps the operator of
orthogonal projection from & onto T%(S).

PROPOSITION 7. — If §={0=t) <t <:-+ <t, <:--} and if f€d
is of the form

f'—'/ f(s1,-- ., 8m)dxs,  * * dXo,,
0<81 < <am

then
1
Psf = —_—
of i1<-"§m€N VHHL T 5 T VAl T Y
tir+1 tim+1
/ / f(s1,...,8m) dsy - dsym Xi, -+ X; . . (11)
tig tim

Proof. — The quantity f, on the right handside of (11) is clearly an
element of T®(S). We have, for A = {iy,...,i}

61: m /
X)) — fs,...,s dX""‘ch,..)
(£, X4) Via+1=ti, -l 11, <o<u<~--<om (& )

tiy+1 tim+1
/ .../ ldX'l“'dX’m>
tiy tipm
O

m tiy 41 tim+1 _
=———-—.——'————-—-/ cee f(sl,...,gm)dsl...dsm.
v iil-l-'l "'zil Y z"m+l_zim tiy tim
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But on the other hand we have

6 1 tiy 41 tim+1
Xa) = 1
(fns Xa) = Ok,m (fiz1 = iy )32 (i1 — 8 )32 o, tim

X .f-(sl yreey sm) dsy .- dsm” (Xt.', +1 —Xtil) - (Xt.',,.-n “Xtip, ) "2

5 1 tig+1 tim +1
=6
" Viar = b Vit = i /m /t.-,..

X f(81y.,8m) dsy -+ dsm
This proves our proposition. ]

Note that the following identities could have been used as natural defini-
tions of the operators af on T®(S).

PROPOSITION 8. — For any partition S and any f€D we have
aj Psf = Ps(ag,, —az)f

Vitie1 — b G?PS)‘ = Ps(a’;’:-fl - at)-f :

Proof. — Let us take f of the form

f= f(s15---,8m) dXsy ** * AxXopm -
0<81 < <8m
Then
(ag,,,—at)f = / [{s15- -+, sm}N[tistis1]] F(81,-- -, 8m) dXay *** dXom
0<81 <+ <8pm

P - = ¥ e [T [
S at‘. - at', = / . ./
* j1<<jm€EN i+l — bt Jm+1l = Vim tjy tim

X l{sl,---,sm}n[ti1ti+1]| f(81,...,8m)

x dsy -+ dsm Xjy ++ Xion
' 1
= _ — Lic(is..j
J1yeedm
' Z Vit =t Vi1 — b, n }

J1<<jm€N

ti1+1 tim+1
F(S1yers8m) dsy - dspm Xjy -+ Xion
tJ'l tJ‘m

1
=a —

J1<<jm €N \4 z.’il+1 - le Y zjm""l - z.?m

tj 41 tim+1
f(sh---,sm) d31"'d3ij1"'Xj,,.
tjl t)'m

=aj Psf .
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In the same way

(0 =e2)f = |

tiga
81,-.y8m-1}U38s) ds d ces
0<91 <+ <8m =1 /t f({ 1 Sm l} 3) Xe1 X sy

21

- - 1
Ps(at. _at‘)f=
141 ]
1< <Im=1EN ‘/t]'x+1 - t]l v \/tjm—l'f'l - tjm—l

tii41 time1+1 it
x/ / / f({s15-.,8m-1} U3s)
iy t; ti

Im—-1

x ds dsy - 'dsm—l ij Tt ij—l

m-—1

= z Z l0<.7'1 << p<i<u41<*<Jm =1
J1<<jm~1€EN k=0

1 ti1+1 tint1  fli
9 — v
Vi1 =t At = Gy /t;, -/t,-,, -/ti
g1 +1 tim—1+1
x/ ..-[ f(sl,...,8k,8,3k+1,---,3m—1)

t51.+1 t.i
X dsy - dsg ds dsgyy - dsym—y X Xjm

m=-1

1
= Vs =t Z =t T
j1<<jm€N G141 = gy 0 Im+l — Uim
ti141 tim+1
[ [ o) o
tj, t;

Im

Vi€t im} Xz -+ Ki - X,

=+y/tis1 —tia; Psf.

Finally,

n
(a;t-n - a;‘:)f =Z/ I[td,ti.u](s)
k=070

<91 < <9 <I<41< <8
X f(81,...,8m) dXs, ** - dXs, dXs AXoppr ** AXopm -

n

+ V£ = 1
Ps(af,, —a)f= 3 N e T T T >
1< <jm41EN Jr1+1 1 Ima1+1 T Vimy1

tiy+1 timt1+1
x [ ./t l[t.'.t.'+1](tjh+x)f(31"‘ 3 Sk41ye ey Sma1)
J1 j

Im41
X dsl "'d3m+1 Xj, "'ij+1
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1
1< <gmp1EN VY bjab1 = Cjy e \/tjm-n +1 = tjmys

iz +1 tim+1 R
/ / f(sl,...,s,-,...,sm+1)

tiy timt1
dsl oos d3m+1 le “es ij“

_ vy /
) PV =t Vi — T S

J1<<jm€N i1

l‘e(.’l »---7J'm+l}

tim+1
/ f(s1,...,8m) dsy-dsm Lig(jy,....im}Xsr *** Xim Xi
t.

)

=\/tis1 =t af Psf.

V. Approximations.

We are now going to prove that the Fock space ® and its basic operators
af, a;, af can be approached by the toy Fock spaces T®(S) and their basic
operators a], a; , af.

We are given a sequence (Sp)nen Of partitions which are getting finer
and finer and whose diameter 6(S,) tends to 0 when n tends to +o0o. Let
T®(n) = T®(S,) and P, = Ps,, for all neN.

THEOREM 9.

i) For every fe® the sequence fn = Pnf, n € N, satisfies f, € T®(n)
for all n € N and converges to f in ®.

i) If Sp={0 =1t} <tp <.+ <tp <.}, then for all teR*, the
operators '

o - +
> a5, 2 +/th, —tie; and ,PEQ 1
kY i S

it <t itr <t
converge strongly on D to af, a; and af respectively.

iii) With the same notations as in ii), for all teR*, the operators

g< a} Pn, ¥ /th, —tra; Poand 3 Vi - tral Py
itr <t

;P <t P <t

converge strongly on D to af, a; and af respectively.

Proof. — i) Asthe &, are refining the (P,), form an increasing family
of orthogonal projections in ®. Let P =\ P,. Clearly, for all s < ¢, we have
n
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that x: — x, belongs to RanPy,. But by the construction of the Ito integral and
by Theorem 5, we have that the x; —x, generate . Thus P, = I. Consequently
if f€®, the sequence f, = P, f satisfies the statements.

#) The convergence of Y- af and Y /%, —tFa; to a and a;
§t7<t R

respectively is clear from the definitions. Let us check the case of a*. We have,
for feD

[ > Vi ‘t?“?f] @)= Yontgrapiimt 3. fle~{s}).

§tp <t P <t s€ontl t], ]
Put t" = inf {t7€S, ;i > t}. We have

2
| ¥ va=fat -at |

itr<t
2
= / | Y lonigapali=t 2 fes{sD - Y fle~{s))| do
P utpce s€ont] 7] s€ono
2
S 2/1;| Z f(a'\ {3}) da'+2j;,| Z 1'””[‘?1‘?.0.1”22

s€aN[t,t) iitp<t
' 2
X Z floe~ {s})l do.
. s€an(tP ], ]
For any fixed o, the terms inside each of the integrals above converge to 0 when
n tends to +oo. Furthermore we have, for n large enough,

LI 2 s~ el ar< [ s onr oo

seori ] 8

t+1
= [ Lol +vis@) do as
0 P

<(E+1) /P (Io] + D (0)? do
which is finite for fe€D;

/,PI > Lionpep e, 0122 Z flo~ {8})|2 o

ity <t s€on[er tn,.]

< /,,( Y Lonlep ez, liz2 | > fle~ {s})|)2 do

i<t s€ant] 47,,]

<[(Z T i) @

Gt <t s€on[t],t],,]

= [(Z e~ tshl) ao

s€o
sStn
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= /p ol 3 If(e ~{sH)P do

s€o
alth

2
<@+1) [ Qo1+ Dlf@)" a0
in the same way as above. So we can apply Lebesgue’s theorem. This proves ).

iii) By Proposition 8, we have for all f€D

> VA~ af Pof = Paalif .

P <t

Consequently

I Z Vi -t af P,,f—a;"f”z

Htrst + ik + + o2
<2t - Pua I+ 2Palat £~ a2 D]

< 2|af f - Paa} f||” +2|laf f - ot £||
which tends to 0 as n tends to +o00.

The cases of a® and a™ are obtained in the same way. ]

V1. Probabilistic interpretations.

It is not the aim of this article to give a complete course about probabilistic
interpretations of the Fock space & (see [Att] for details) ; but we recall that
in the same way as &, the space & is naturally isomorphic to the L? space
of the canonical space (€2, F,P) of some basic processes. Namely, the Brownian
motion, the Poisson process, the Azéma martingales, and some other ones.

Again the multiplication of random variables will make a difference be-
tween the different interpretations. What we need to know here is that the
operator of Brownian multiplication by the Brownian motion is the operator

W =af +a;
and the operator of Poisson multiplication by the Poisson process is
Ny =af +a; +aj +tI.
Let us consider an approximation of the Fock space ® by toy Fock spaces T®(n),
neN.
THEOREM 10. — OnT®(n), let X; = af +a;,i€N. Then, for all teR*;

we have that
2 tiv1 —t X
it <t
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converges strongly to W;.

Proof. — The proof is immediate from Theorem 9. ]
Let S, = {i/n; ieN}.

THEOREM 11. — OnT®(n), let X; = a} +a; +cnal, i€N be associated
to the coefficient p, = 1/n. Tben, for all teR*, we have that

ZX

c it <t

converges strongly to X; = N — tI, the operator of multiplication by the com-
pensated Poisson process.

Proof. — If p, =1/n,then g, =1-1/n and ¢, = Vﬁ% = '._-21
Thus cp//n converges to 1. Now,

1 1 _ e
ZX, Z\/ﬁa;"+%a,.+7-;;a,

1,t.<t §t4 <t
Z Vtit1 = ti(af +a7 )+ E
it <t ti<t
which clearly converges to a;” + a; + a§ by Theorem 9. ]

The two results above are stronger than the usual approximations of the
Brownian motion (resp. Poisson process) by Bernoulli random walks. Not only
they give an approximation of the trajectories but of the multiplication opera-
tors. And this is obtained all together, in a single approximation theorem, the
Theorem 9.

VII. The Ito tables.

This section is heuristic, but it gives a good idea of why the discrete
quantum Ito table is a discrete approximation of the usual one, though they
seem different. Let S, = {i/n ; i€N}. Let &} = 1/y/n af, & =1/y/n a] and
@; = aj. The Theorem 9 shows that & is a good approximation of da§, where
t = t;. Now the discrete Ito table becomes

~ I &2' a; a;
~+ l—

a; 0 =45 0

-~ 1 ~o -
a; L1r-1a; 0 a;

a2 a; 0 a
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But

1) 1&; is not an infinitesimal for ) ~&; is almost }af which converges
it <t
to 0. Thus & can be considered to be 0 in this table;
2) L1 is simply dt I, that is (t;+1 — t;)I. Thus at the limit this table
becomes

~ | daf da; dag
da; 0 0 0
da;y | dt1 0 da;
daf | daf 0 dag .

That is the usual Ito table.

Remark. — The above heuristic approximation of the Ito table as been
made rigourous by Y. Pautrat [Pau].
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