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APPROXIMATING THE FOCK SPACE

WITH THE TOY FOCK SPACE

Stéphane Attal

ABSTRACT. - We show how the toy Fock space can be embedded
into the usual Fock space of quantum stochastic calculus. This embedding gives
rise to a rigorous discrete approximation of the Fock space and its natural
noise operators. We recover the quantum Ito table from the discrete one. We
finally show that the quantum Brownian motion and Poisson process can be
simultaneously approached by quantum Bernoulli random walks.

I. The toy Fock space.

Let us realise a Bernoulli random walk on its canonical space. Let n =

and :F be the 03C3-field generated by finite cylinders. One denotes by vn
the coordinate mapping : : vn (w) = wn for all 

Let p E ]0, 1[ and q =1-p. Let p be the probability measure on (03A9,F)
which makes the sequence a sequence of independent, identically dis-
tributed Bernoulli random variables with law + q60. Let ~ ( ~ j ] denote
expectation with respect to . We have = p. Thus the random
variables

Xn = 
03BDn - p pq,

satisfy the following: 
i) the Xn are independent,

ii) Xn takes the value with probability p with probability
q,

iii) IEp[Xn] = 0 and =1. .

Let ~p be the space L2(Sl, ~’, . We define particular elements of ~P
by

{XØ = 1, in the sense XØ(03C9) = 1 for all 03C9~03A9
X A = X=1 ...Xin if A = {il, ... in} is any finite subset of N.

Let denote the set of finite subsets of N. From i) and iii) above it
is clear (XA is an orthonormal set of vectors of 
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PROPOSITION 1. - The family {XA ; is an orthonormal

basis of ~p . .

Proof. - We just have to prove that {X A, , forms a total set
in ip. In the same way as for the XA, define

{ 03BDØ = 1

03BDA = 03BDi1 .. 03BDin for A = {i1, ... ,in}.

It is sufficient to prove that the set ; is total.

The space (1Z, ~’, can be identified to (~0, lj,,~(~0,1~), for some

probability measure via the base 2 decomposition of real numbers. Note
that

1 if 03C9n = 103BDn(03C9) = 03C9n =0 if 03C9n = 0

thus vn(w) = 103C9n=1. Consequently = ...103C9in=1. Now let /6 p
be such that ( f, v~y = 0 for all Let I = ~k2’", (k + 1)2’’~~ be a
dyadic interval with k  2". . The base 2 decomposition of k2-n is of the form
(03B11,...,03B1n, 0, 0,...). Thus

1f(03C9)dp(03C9) = [0,1]f(03C9)103C91=03B11...103C9n=03B1n dp(03C9).
The function 103C91=03B11...103C9n=03B1n can be clearly written as a linear combination of
the vA . . Thus f r f d ~cr = 0. The integral of f vanishes on every dyadic interval,
thus on all intervals. It is now easy to conclude that f = 0. m

We have proved that every element f E ~r admits a unique decomposition

f =  f (A)xA (1)

with
. 

= ~  oo . (2)
AEP, (N)

We can now define the toy Fock space. The toy Fock space is the separable
Hilbert space i whose orthonormal basis is chosen to be indexed by ~f . Let

~XA ; ; be this basis. As a consequence there is a natural isomorphism
between i For each pE 0,1, f the space ~ is called the p-probabilistic
interpretation of ~.

The only property that allows to make a difference between 03A6 and ~p, ,
or between different is the product. Indeed, as ip is a L2 space it admits
a natural product. The way we have chosen the basis of makes the product
being determined by the value of X~, 
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PROPOSITION 2. - In ~p we have

Xn =1 + cpX"

~.

Proof.

X2= n 1 ( v2+ n p 2-2 p v n ) = l~ ~p 2 + ( 1-2 1~) v n ~pq pq

= 1 pq (p2 + (q-p)03BDn) = 1 + p2-qp qp + q-p qp03BDn

= 1 - pcp pq + cp pq03BDn = 1 + cp03BDn-p pq. []

The product that the p-probabilistic interpretation p determines in 
is called p-product.

On i, one defines the creation, annihilation and conservation operators
by

a+nXA = 

a-nXA = XAB{n}1n~A
aonXA = XA1n~A .

Note that an , an, a; are completely determined by

i) their value on 1 and Xn, ,

ii) the fact they act trivialy on Xm n.

What we mean exactly is the following. If Hn denotes the closed subspace
generated by 1 and Xn, then there exists a natural isomorphism between ~ and
 Hn (where the countable tensor product is understood to be associated to
nEN
the stabilizing sequence (Un)neN such that un = 1 for all n) given by

XAH 1®...®1®X=1 ®1®...®1®X~’®... if A={ii,...,i"} .

The definitions of an show that these operators act only on Hn and act
as the identity everywhere else. In particular a; commutes with a~m for all n ~ m
and all

~, r~E{+, -, 0}. The compositions are given by the following discrete quan-
tum Ito table.



480

PROPOSITION 3. - The products a~na~n are given by

an 0 an 0

an I-an 0 an

an o an 0 .

Proof. - Straightforward. a

PROPOSITION 4. - The operator of p-multiplication by Xn is

given by
MXn = an + an + cpaon.

Proof.

XnXA = + + cpXn)1n~A
= a+nXA + a-nXA + cpaonXA . []

II. The Fock space.

We here give a short presentation of the Fock space and its quantum
stochastic calculus; one can find all details in [Att]. .

Let P be the set of finite subsets of . Then ~ _ ~ ~" where Pn is the
n

set of n-elements subsets of R+ . The set Pn can be identified to the increasing
simplex E" _ (0  tl  ~ ~ ~  tn } of R" . Thus Pn inherits a measured space
structure from the Lebesgue measure on . This also gives a measure structure
on P if we specify that on Po = {0} we put the measure 60. Elements of P are
often denoted by u, the measure on P is denoted by du. The 03C3-field obtained
this way on P is denoted by r.

The Fock ~pace ~ is the space . An element f of ~ is thus
a measurable function f ~ ~ ~ such that

~f~2 = / d03C3  ~ .

One can define, in the same way, and by replacing R+ with [a, b] C
R+ . There is a natural isomorphism between ~ given by f
where f (a) = n [o, t])g(u n (t, +oo[). . Define ~t~03A6 by

0 if |03C3| ~ 1~t(03C3) = 1[0,t](s) if 03C3 = {s}.
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Then xt belongs to . We even have xt - for all s  t. This last

property allows to define an Ito integral on 03A6. Indeed, let (gt)t~0 be a family
in ~ such that

~[gt~~ is measurable,

i i) for all t,

, 

.

then one defines dxt to be the limit in ~ of

c~- / (xt;+, - xt; ) (3)
; ts+ 1 2014 ~ t;

where Pt is the orthogonal projection onto and tts, is a partition
of R+ which is understood to be refining and to have its diameter tending to
0. Note that f t;’+1 c!~ belongs to which explains the tensor
product symbol in (3). fl

We get that ~0 gt d~t is an element of 03A6 with

~ ~0 gt d~t ~2 = ~0 ~gt~2 dt. (4)

Let one can easily define the iterated Ito integral on 03A6.

jn(f ) = / 
by iterating the definition of the Ito integral. We put

In( f) = / .

We have the following important representation.

THEOREM 5 (~Att~). . - Any element f of fi admits an abstract chaotic
representation

f = 

with

= / d~

and an abstract predictable representation

f = f(Ø)1 + ~0 Dtf d~t

with 

~f~2 = |f(Ø)|2 + ~0 ~Dsf~2 ds
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where [Dsf](03C3) = f(03C3 ~ {s})103C3~[0,s[ is well-defined for ds  d03C3 almost all (s, 03C3).

Let us now recall the definitions of the creation, annihztation and conser-
vation processes in ~. They are respectively defined by

[a+tf](03C3) = 03A3f(03C3 {s}), (5)
iEs
~t

~at fj(a) = / ~t U {9}) ds~ (6)
0

[aotf](03C3) = |03C3~ [0,t]| f(03C3). (7)
There is a good common domain to all these operators, namely

= ~ / p (~~ ~f (~)~2 d~  oo . .
We also recall an equivalent definition taken from ~A-M~, which can be easily
recovered from (5}, (6) and (7}. . Let f = f (0) I + f o Dt f dxt be an element of
D. Then Pt f = 1 + f ~ Da f dx, also belongs to D and

t t

at Ptf = t0 a+sDsf dxa + t0 Psf d~s , (8)
0 0

a-tPtf = t0 a-sDsf d~s + t0 Dsf ds, (9)
0 0
t t

aotPtf = t0 aosDsf d~s + t0 Dsf d~s. (10)
0 0

Finally, let us recall Hudson-Farthasaratby’s quantum Ito table. We give
it under a formal way only, we refer to or ~A-M~ for a rigorous statement.

» dat dat dat
0 0 0

dat dt I 0 dat

dat dat 0 daot.

III. Embedding the toy Fock space into the Fock space.
Let S = {0 = to  tl  ~ ~ ~  t"  ~ ~ ~} be a partition of 1~+ and ~(s} _

sups (ts+1- ti| be the diameter of s. For s being fixed, define 03A6i = 03A6[ti,ti+1] ,

We then have 03A6 N ® 03A6i (with respect to the stabilizing sequence (1)nEN}. .
iEN

For all i~N, define

Xi = ~ti+1 - ~ti  ~ 03A6i ,
~+1 - t
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_ a£~~ - a£
ai = ti+1-ti ,

aoi = aoti+1 - aoti ,

~ 
- a) ~ ~ 

a+i = P1ti+1-ti on 03A6i, a+i = I on 03A6j for j ~ i

where P1] is the orthogonal projection onto L2(P1).

PROPOSITION 6. - We have

a-iXi = I j aoiXi 
= X; {a+iXi = 0a-i1 = 0 , a°i1 = 0 , a+i1 = Xi .ai l = 0 

’ ai l = 0 
’ aj l = X; 

°

Proof. - As a-t1 = aot1 = 0 it is clear that ail = aoi1 = 0. Furthermore,
aj l = xt thus

at i = P1]~ti+1-~ti ti+1-ti = Xi.

Furthermore, by (8), (9) and (10) we have

a-iXi = 1 ti+1-ti (a-ti+1 - a-ti) ti+1ti 1 d~t

= 1 ti+1-ti [ti+1ti (a-t - a-ti) 1 d~t + ti+1ti 1 dt]I+lj I ~ t; t; 

~ t;+i - t; ~~ ~ ~’~ ~ 

aoiXi = 1 ti+1-ti (aoti+1 aoti)ti+1ti 1 d~t

= 1 ti+1-ti [ti+1ti (aot - aoti) 1 d~t + ti+1ti 1 d~t]
~ t;+i - t; ~~’~ ~ ~’ "

a+iXi = 1 ti+1-ti P1](a+ti+1 
- a+ti)ti+1ti 1 d~t

= 1 ti+1-tiP1][ti+1ti (a+t - a+ti) 1 d~t + ti+1ti tti 1 d~s d~t]
= 2 ti+1-tiP1] ti+1ti tti 1 d~s d~t= -Pii I, I; i dxs dxt

= 0 .
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Thus the action of the operators a1 on the X; is similar to the action
of the corresponding operators on the toy Fock spaces. We are now going to
construct the toy Fock space inside ~.

We are still given a fixed partition S. Define T~(S) to be the space of
which are of the form

f = ~ f (A)X a

(with ~f~2 =  |f(A)|2  ~).

The space T03A6(S) is thus clearly identifiable to the toy Fock space ;
the operators a1, ~E{+, -, o}, act on exactly in the same way as the
corresponding operators on ~. We have completely embedded the toy Fock
space into the Fock space.

IV. Projections on the toy Fock space.
Let S = {0 = to  ti  ... .  tn  ~ ~ ~} be a fixed partition of R+ .

The space is a closed subspace of ~. We denote by Ps the operator of
orthogonal projection from ~ onto T~(S).

PROPOSITION 7. - If S = (0 = to  ti  ... ~  tn  ~ ~ ~} and if f E~
is of the form

f = 0s1...sm f(s1,....,sm)d~s1 ... d~sm

then

Psf =  1 ti1+1-ti1...tim+1-tim
ti1+1ti1 ... tim+1tim f(s1,...,sm)ds1...dsm Xi1...Xim. (11)

Proof. - The quantity In on the right handside of (11) is clearly an
element of T03A6(S). We have, for A = {il, ... 

ti1+1ti1...tim+1tim d~s1 ...d~sm~

= 03B4k,m ti1+1-ti1...tim+1-tim ti1+1ti1 ...tim+1tim f(s1, ...,sm) ds1... dsm.
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But on the other hand we have

x /(~i,..., ~) d~ jj (x., +1 -X~ ) - (x~+i -~))! 
i ~’i+~ /~’~+i

~ ~ 
~1+1 - ~i "’ ~~ ~~

x /(~i,...~) ~i .

This proves our proposition. *

Note that the following identities could have been used as natural defini-
tions of the operators o~ on T$(S). .

PROPOSITION 8. 2014 fbr any pardon S and any /~D we have

aoi PS f = PS(aoti+1- aoti)f
= .

Proof. 2014 Let us take / of the form

f = 0s1...smf(s1,...,sm) d~s1...d~sm.
Then

(aoti+1 -aoti)f = 0s1...sm |{s1,... ,sm}~[ti, ti+1]| f(s1,... ,sm) d~s1 ... d~sm

PS(aoti+1 - aoti)f = 1 tj1+1-tj1...tjm+1-tjm tj1tj1 ... tjmtjm
x ){~i,...~m}r![~,~+i]) /(~i,...~~)
 ds1 ... dsm Xj1 ... Xjm

= 

1 tj1+1-tj1...tjm+1-tjm1i~{j1,...,jm}
tj1+1tj1 ... tjm+1tjm f(s1,...,sm) ds1...dsm Xj1 ...Xjm

= aoi 1 tj1+1-tj1 ...tjm+1-tjm

... tjm+1tjmf(s1, ..., sm) ds1...dsm Xj1 ... Xjm
~~i ~~~
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In the same way

_ 1 (a-ti+1-a-ti)f = 
0s1...sm-1 

f({s1,..., sm-1} ~s) ds d~s1... d~sm-1

PS(a-ti+1 - a-ti)f = 1 tj1+1- tj1 ... tjm-1+1- tjm-1

t;+1...

f({s1, ...,sm-1} ~s)
 ds ds1 ...dsm-1 Xj1 ...Xjm-1

m-l

= L ~ 10,~1 ...j~ ~,~i+1 ....~m-i
j1...jm-1~N k=0

 1 tj1+1-tj1...tjm-1+1-tjm-1tj1+1tj1...tjk+1tjk ti+1ti

tjk+1+1tjk+1...tjm-1+1tjm-1 f(s1,...,sk,s,sk+1,...,sm-1)
 ds1 ...dsk ds dsk+1... dsm-1 Xj1 ... Xjm-1

= ti+1-ti 1 tj1+1-tj1...tjm+1-tjm

 tj1+1 ... tjm+1tif(s1,...,sm) ds1 ...dsm

1i~{j,...,jmXj1...i...Xjm

= ti+1 - ti a-i Psf.

Finally,

(a +ti+1 - a+ti) f = 0s1...skssk+1...sm 1[ti ,ti+1] (s)

 f(s1,...,sm) d~s1 ...d~sk d~s d~sk+1 ... d~sm .

P a~ - a~ = 1 "PS(a+ti+1 - a+tif = 
tj1+1-tj1...tjm+1+1-tjm+1

 1[ti,ti+1](tjk+1)f(s1,...,sk+1,...,sm+1)

t11 
x dsl .. , dsm+1 Xji ... 
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= 

tj1+1-tj1... tjm+1+1-tjm+1 1i~{j1,...jm+1}

tj1+1tj1...tjm+1tjm+1 f(s1,...,i,...,sm+1)
ds1 ... dsm+1 Xj1 ...Xjm+1

= ti+1-ti1 tj1+1-tj1...tjm+1-tjmtj1+1tj1

... tjm+1tjm f(s1,...,sm) ds1...dsm 1i~{j1,...,jm}Xj1...XjmXi
= ti+1 - ti a+i Psf .

[]

V. Approximations.
We are now going to prove that the Fock space $ and its basic operators

at, , at , , at can be approached by the toy Fock spaces and their basic

operators ai , ai a~ .
We are given a sequence (Sn)nEN of partitions which are getting finer

and finer and whose diameter tends to 0 when n tends to +00. Let

T ~(n) = and Pn = for all 

THEOREM 9. .

i) For every the sequence f n = E N, satisfies f n E 
for aU n E N and converges to f in ~.

ii) If Sn = (0 = to  t?  ...  t~  ~ ~ ~}, then for all tER+, , the
operators

E ai, E tnia-i and 03A3 tni+1 - tnia+i
i;t" t i;t, t i;t, t

converge strongly on 1~ to a~, at and at respectively.
iii) With the same notations as in ii), for all the operators

E aa ~ t +1 - Pn and ~ ti+1 - Pn
i;t’.’ t i;t’.‘ t i;t" t

converge strongly on D to at , at and at respectively.

Proof. - z) As the Sn are refining the (Pn)n form an increasing family
of orthogonal projections in ~. Let Poo = B/ Pn. . Clearly, for all s  t, we have

n
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that xt - x, belongs to RanP~. But by the construction of the Ito integral and
by Theorem 5, we have that the xt - x, generate W . Thus P~ = I. Consequently
if fe &#x26;, the sequence fn = Pnf satisfies the statements.

ii> The convergence of , L ai and L v’ti+l -tnia-i to at and ai
,,t? t ;,ti t

respectively is clear from the definitions. Let us check the case of a+ . We have,
for f~D

’

( £ v’tr+1 - tnia+i f) «> = £ i irnit, ,ti+, ii=i £ f« , isi > .

t t ,t,~,j

Put tn = inf {tni~Sn ; t? > t) . We have

)) £ v’tr+1 - tnia+i - at 
;;tt t

" / ) £ £ f(U ’ 181) ~ £ f(" ’ 181) )~ dU" 
;;t?t sern[o,t]

 2 / ) £ f(u , (s)) ) ~ du + 2 / ) £ "’ 
sern[t,t] " 

";t?t
. 

x £ f(u , (s) ) )~ du.
sern[t? ,t?~,]

For any fixed u, the terms inside each of the integrals above converge to 0 when
n tends to +oo. Furthermore we have, for n large enough, 

’

/ ) £ f(u , {s}|12 du ~ p|03C3| £ lf(u , {s})|2 d«
= / o t+i / p (|03C3| + 1)|f(03C3)|2 dU d8
 (t + i) / p (I«I + i) lf(«) l~ d«

which is finite for feD;

/ ) £ £ f(" ’ 181))~ dU" 
;;t?t 

 / ( £ ) £ f(U ’ (S)) ) ) ~ ~U" 
;;tjt 

~  ~ ( ;;t? £ t sErn[tQ £ ,tj~,] j f(u , (s)) j) ~ du

= / ( £ lf(u , dU
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- lul  |f(03C3{s})|2 do

 (t + 1) + 1) ~f (~) I2 ~
in the same way as above. So we can apply Lebesgue’s theorem. This proves ii).

iii) By Proposition 8, we have for all f ED

E tni+1-tni a+i Pnf = Pna+tn f .

t

Consequently

j E t +1- t, a~ Pn f - at f
z;tri ’ _t 

f -Pnat f~2+2~Pn(a+t f - at. 

 2~a+tf - Pna+tf~2 + 2~a+tf - a+tnf~2
which tends to 0 as n tends to +00.

The cases of a° and a- are obtained in the same way. N

VI. Probabilistic interpretations.

It is not the aim of this article to give a complete course about probabilistic
interpretations of the Fock space $ (see [Att] for details) ; but we recall that
in the same way as i, the space $ is naturally isomorphic to the L2 space
of the canonical space (i~, 7, P) of some basic processes. Namely, the Brownian
motion, the Poisson process, the Azéma martingales, and some other ones.

Again the multiplication of random variables will make a difference be-
tween the different interpretations. What we need to know here is that the

operator of Brownian multiplication by the Brownian motion is the operator

Wt = at + at
and the operator of Poisson multiplication by the Poisson process is

Nt = at + at + at + tI . .
Let us consider an approximation of the Fock space ~ by toy Fock spaces T ~ (r~), ,
nEN.

THEOREM 10. - On X~ = at Then, for all ;

we have that

E ti+1 _ ts X~
’i;t; t
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converges strongly to m .

Proof - The proof is immediate from Theorem 9. m

Let 5" = {i/n ; i~N}.

THEOREM 11. - On let X= = at +ai i~N be associated
to the coefficient pn =1/n. Then, for all t~R+, we have that

1 n  Xi

converges strongly to Xt = Nt - tI, the operator of multiplication by the com-
pensated Poisson process.

Proof - If pn = then qn = 1 - and cn = 1-2/n 1/n-1/n2 = n-2 n-1.
Thus cn/n converges to 1. . Now,

1 n 03A3 Xi = 03A3 1 n a+i + 1 n a-i + cn n aoi
’ - i;t; t i;ti t ’ - ’ ’~

ti+1 - ti(a+i + a-i) + cn n aoi
~ 

which clearly converges to at+ + at + at by Theorem 9.

The two results above are stronger than the usual approximations of the
Brownian motion (resp. Poisson process) by Bernoulli random walks. Not only
they give an approximation of the trajectories but of the multiplication opera-
tors. And this is obtained all together, in a single approximation theorem, the
Theorem 9.

VII. The Ito tables.

This section is heuristic, but it gives a good idea of why the discrete
quantum Ito table is a discrete approximation of the usual one, though they
seem different. Let Sn = {iln ; ; iEN}. Let aa = 1/B/~ c~, 3i = 1/B/!? aj’ and
oi = ai. . The Theorem 9 shows that ~i is a good approximation of da~t, where
t = t; . Now the discrete Ito table becomes

a+i -i oi

as 0 0

-i 1 nI-1 n°i 0 -i

oi +i0 oi.
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But

1) is not an infinitesimal for E is almost iat which converges
to 0. Thus 1 noi can be considered to be 0 in this table;

2) n I is simply dt I, that is (t=+1 - t~)I. Thus at the limit this table

becomes
y da~ dat dat

dat 0 0 0

dat dt I 0 dat

dat dat 0 dat .

That is the usual Ito table.

Remark. - The above heuristic approximation of the Ito table as been
made rigourous by Y. Pautrat [Pau].
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