
SÉMINAIRE DE THÉORIE DES NOMBRES DE GRENOBLE

COLIN D. WALTER
The Ambiguous Class Group and the Genus Group of
Certain Non-Normal Extensions
Séminaire de théorie des nombres de Grenoble, tome 7 (1978-1979), exp. no 7, p. 1-26
<http://www.numdam.org/item?id=STNG_1978-1979__7__A7_0>

© Institut Fourier – Université de Grenoble, 1978-1979, tous droits réservés.

L’accès aux archives du séminaire de théorie des nombres de Grenoble implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=STNG_1978-1979__7__A7_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


VII. 1 Séminaire de Théorie des Nombres 
4 octobre 1979 

Grenoble 

THE AMBIGUOUS CLASS GROUP AND THE GENUS GROUP 

OF CERTAIN N O N - N O R M A L EXTENSIONS 

par 

Colin D. WALTER 

In an article generalising work of Roquette and Zassenhaus, Connell 

and Sussman [2] have demonstrated the importance of certain prime ideals 

in a number field k Q for estimating the &-rank of the class group 

of an extension k. These ideals have a power prime to & which is 

principal and they have prime factors in k with ramification index 

divisible by £. The products of the prime divisors of these ideals 

in the normal closure K of k/k are invariant under Gal(K/k ). 
o o 

Thus certain roots in k of the ideals in k are fixed by the Galois 
o 

group. This leads to the concept of ambiguous ideals in an extension 

k/kQ which is not necessarily normal. 

Of particular interest is the case when K/kQ is metacyclic. Then 

k/kQ is almost a cyclic extension and many of the theorems of cyclic 

fields have analogues which apply. Since the genus number and the 

ambiguous class number are equal for a cyclic extension it is worth 

comparing them in k/ k

Q. In fact, there they are usually different and 

this can be seen from the class group description of the genus fiela. A 

character theoretic description can also be given for the genus group 
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and this is useful for computing the genus number. 

Estimates for the genus number and ambiguous class number have been 
combined for dihedral extensions by several authors, including Barrucand 
and Cohn [l] for pure cubic fields. This is done here for pure fields 
of any odd prime degree over the rational field Q. Indeed, applications 
to pure fields are the motivating force in this work, and much of the 
inspiration comes from the class rank estimates of Fröhlich [3] which 
generalise those of Holzer [s]. 
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1. Ambiguous Classes for Frobenius Extensions 

Let G be a Frobenius group with normal kernel N and a complement 
F. Then G is a semi-direct product of N and F for which the 
distinct conjugates of F intersect pairwise in the identity. Consequently, 
if n and f are the orders of N and F respectively then the 
conjugacy classes of N-l under F all have order f. Hence f divides 
n-1 and is coprime to n. 

Suppose K/k is a normal extension of number fields whose Galois o 
N F 

group is G. Let L = K and k = K be the fixed subfields of the 
subgroups N and F. There are many similarities between k/k

Q
 a n c l 

its lifting by L to the normal extension K/L, but the structure of 
the latter is generally easier to describe. In this study of the 
extension k/k̂  t h e analogy between it and the classical case of K/L 
can be drawn by assuming f = 1 so that k/k becomes normal. 

o 

Denote the (classical) class group of a field ft by , its 
class number by h , the n-subgroup of by C^, and the maximal 
subgroup with order prime to n by 1• Thus = Ĉ  X Ĉ •. 
A class of k will be called ambiguous (over kQ) if its image in 
H is fixed by N (which generates all the conjugates of k/k ), K o 
or, equivalently, by G. The subgroups of such classes are written 
G G G H , C , and C, 1 . Likewise an ideal of k is called ambiguous 

if its extension to K is fixed under N or, equivalently, under G. 

A class of is called strongly ambiguous if it contains an ambiguous 
ideal. These terms are just the standard ones when k/k is normal, 

o 
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and they can easily be generalised still further. 

1.1 Theorem The group of ambiguous classes for k / k
Q is the 

G G G G direct product H = C x C, 1 . Here C, T is the isomorphic 
image of C, 1 in C 1 under the natural embedding given by extension 

&o — k — G G of ideals; and under extension of ideals C, is isomorphic to C„ ,  k £ K ' 
the group of ambiguous classes in K/k with n-order. Thus 

o •— 

Proof In Theorem 5.1 of £ll] it was shown that the natural maps 
induced by extension of ideals provide an exact sequence 

o 

Hence any class of C ' which has its image in C ' fixed by G 
comes from a class in • , and vice versa. 

o 

Since n is prime to [K:k] there is a natural embedding 
G G 

C k
 c—> CR which restricts to Cfc

 c—• C K . This is an isomorphism 
because the inverse map is obtained by applying the idempotent 

-lr 
eF = f ^geFg a n d r e s t r i c t i o n o f i^als, i.e. a suitable power of 
the norm. 

Thus the basic observation that provides information about the 
ambiguous class group of k/k is this: 

o 
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Q 
1.2 Lemma is isomorphic to the direct summand of the 

N 
ambiguous n-class group C R £f K/L given by the projection 

Q 
e p, viz. C K . 

1.3 Lemma If is an ambiguous ideal of k / k
Q then the extension  

of N 01 is equal to 
O 

Proof The extension of N a to K is just the product of the 
_________ J£/ K. 

O 
conjugates of the extension of (X under N. However, the extension of 
UL is fixed under the action of N and so the product of 
conjugates is just the nth power. The same equality holds on restriction 
to k. 

Let 1̂  be the multiplicative group of non-zero fractional ideals 
of a field Q, extended to K wherever necessary; the subgroup 

r 
of principal ideals; 1̂  the subgroup of ideals which are fixed by a 

r* 
subgroup r of G when extended to K; and 1̂  the subgroup of 
ideals which lie in a class of K fixed by T. With this notation 

G G 
the isomorphic groups C and C are the n-subgroups of G* G* I, / P, and Irr / P„ respectively. The most accessible parts k k K K 

G G 
of these groups are the subgroups I k

 P
k/ Pk a n d J

K
 P K ^ P K o f s t r o n g 1 y 

ambiguous classes, and in many cases they give the whole group (vid. 
Corollary 1.9). 

Let y> be a prime ideal of k̂  with prime divisors OĴ  in k 
and below the prime 5& of K. Suppose e,e',e., and ef. are the 

3 3 
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ramification indices for these primes in K/L, L/k , k/k , and K/k 
o o 

respectively. The equality e.e.* = ee' gives b n = N 13 = ... 3 3 K/K * ee'/e.' o 
yj.(N Of .) J . Hence any common factor between the ef/e.f divides 
both n and f and so equals 1. Thus = TT^j ^ n a s 

no roots in k. Any divisor of ^ in k which is fixed by G 
must decompose in K as a power of = ^XrcHXG?^^ where 
H is the decomposition group of *J3* over k̂ . Therefore such a 
divisor is a power of c/£ = 6 and the generators above 

G G / ̂  p of 1̂  and 1̂  are W and respectively. Since the 
e /nee1 

extensions of p are equal to for k and for K the powers 
of and cannot generate ideal classes with n-order in or 

other than those of the powers of the extensions of unless e > 1, 
G G 

i.e. the prime ideal Jp ramifies in K/L. Hence I K and 1̂  are 
generated (the former up to an index prime to n) by I and I L k O 
respectively, together with the ideals (Jĵ  and respectively which 
divide the prime ideals .p e 1̂  which are ramified in K/L. 

o 

Put e for the ramification index in K/L of a prime ideal 
T 

£ € I k . Then, o 

1.4 Lemma [l G
:i ] = TL e„ . ===== L k k J P f o 

1.5 Remark There are potentially more classes in k to be found 
from the decomposition of ramified primes: each divisor (Jj^ of $ in 
k yields some class, but the ideal c| may only generate certain products 
of these classes. 
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From here on suppose N is cyclic, with generator a. Then F 
is also cyclic, with generator <f> say, because it is a subgroup of the 
cyclic automorphism group of each subgroup of N with prime order. 
Thus G is metacyclic and, because f > 1, n is odd. Write S for the 
sum in the integral group ring 2Z[G] of the elements in a subset S of 
G. Define ^ e Z[G] by (1-a)^ = F(l-a) and e„ = f"1 ? . Then 3X 

is determined uniquely up to a multiple of N, so that e^ is really 
an idempotent of ZZ£G]/Z£G]N which is conjugate to ê . We have 

e p = f-1F and (l-a)e^ = eF(l-a). 

Finally, let denote the unit group of a field ft, r(ft) the 
Q-dimension of Q ® ̂  E n and W the torsion subgroup of E^. From 
[ll] §3.1, it is known that W c L and W Fck Q. 

1.6 Theorem The number of strongly ambiguous classes for k/k̂  is 

h, n e ̂  k v ?  o 
IH (N,E K) | 

where the product is over (finite) prime ideals p of kQ. 

i k
G v p k s i k

G/« k
G^ p

k> £ ( Ik G / pk ) / ( p k G / p k >• T h e 

G o o 
numerator has order [i : I "] fl, :P ~| = hi He by 1.4. Since by 

o o o o (r 
G ~ 

1.3 its exponent divides n, the denominator is P /P = 
e e ° e ( P K V L ) F = ({aeK|a1"aeEK}/LxEK)F = ((K 1"^ EJ/E^'0)** = H^N.E^*. 
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1.7 Corollary The number of strongly ambiguous classes in k/k Q  

is a multiple of 

( h
k wt* 1" 0" V*.1"0*1'] 

i, 
n ^ E L : N K / L E J 

h, n e 
n ) o 

nP(L)+1[w:wV] 

h, II e 
. . . x k V P 
i n ) o 

[K
N-S.EK:Ek

n-^[w:wV] 

The number of strongly ambiguous classes in k/k is a divisor of 
o — — — 

k o p * 

Proof Define 3 ± e Z£G]/ZZ[G]N by 3 = (l-a)"1F(l-a)1. Then 

from [ll]§1.7, there is a direct sum decomposition 2Z[G]/2Z[G]N = 
© 0̂ I<F2Z[GJBI which yields 

H 1 ( N'V = ®o.<i<fHl(N'EK)Pi • 

Here g Q and 6 1 can be replaced by e_ and e^ respectively so 

that | H 1 ( N , E R ) e 3 | divides J H 1 ( N . E K ) j | H 1 ( N , E R ) F j " 1 . The second 

factor is just [ K 1 " 0 n E k : E K

1 " a A k] whilst the first can be translated 
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using the value Q(E ) = n ̂  for the Herbrand quotient given, for example, 
K 

in [13] . Thus |H1(N,EK)| = n|H°(N,FT{)| = n [ E
L

: N
K / L

E
R ] • This gives 

(i) from Theorem 1.6. 

For (ii) the part of the denominator of 1.6 due to torsion 
in E K must be extracted. It is [k1 ^ W i E ^ 0r\ w] . The non-torsion 
part divides H1(N,E„/W) = n("E /W:N E /W~| which itself divides 

K L L K/L K -* r(L)+l 1-a l-o* n . For £ e k r\ W choose a e k such that C = a . Then 
£ n = £ N = a^ 1" 0^ = 1 because WcK N. Clearly kQ(C,a)/ko is normal. 
But G has no normal subgroups other than those containing or contained 
by N. Thus a ft k implies L = k (?). Also 5 e k implies cte k 

o o o o 
1-a 1-a 

and hence £ = 1. So (k A W)/(E n W) is trivial unless possibly 
when Lck ( A ) , and then its order divides [w:wV]. In particular, 
if k = kQ(n/a) and a prime not dividing n is ramified in k / k

Q then r 1-a 1-a i oc cannot be a unit and |k r\ W s Efe a W] = n. 

For the other parts consider the denominatior of 1.6 again. It 
comes from P G/P = {ae k | a1" ° e E_ }/k *E = (k 1"^ E )/E 1 °. This has 

o <̂  ^ ^ n 1-a „ x /T, 1-a l-a . ^ 1-a ^ (n-N)/(l-a) /T. n-N the factor group (k nEj/E. (k A W) = (k n E^ /E 
K K K K 

n-N n-N c (k r\ E )/E where the isomorphism is given by the class of K k a 1 ° e k* °r\ E mapping to the class of a*1 N. This is well-defined: K 
1-a * * firstly because a determines a up to an element $ e L A k = 

k X and (aB) n = a*1 for such 3; and secondly because if o 
1-a w ^ n-N (n-N)/(l-a) n(n-l)/2 a = CeW then a = C = C = 1 by the oddness 
of n. The map is certainly surjective. For the injectivity suppose 
a 1 ° e k1 °r\ E maps to E n N. Then (oc£)n N = 1 for some £ e E . 

K k ^ K 

Without loss of generality a n~ N = 1 so that (a1 °) n = (a11)1 ° = a^ 1 1 
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1-a l-o 
whence a e k A W represents the trivial class. The subgroup 

1-a 1-a 

initially quotiented out was (k ^ W)/(Ek A W). which has order 
dividing [W:W^Wn], as was shown above. This completes the proof of 
(iii) and gives the last part. 

Remarks When n=& is prime and h, is prime to & these estimates 
— ko 
give lower bounds for the order of an elementary abelian £-group within 
the class group of k and hence also a lower bound for the minimal 
number of generators of its &-Sylow subgroup. Part (iii) and its 

r(k)-r(k )+l 
approximation h II e.3/n o therefore generalise Frohlich's 
Theorem 1 in [3] and its proof. This approximation yields the result 
of Connell and Sussman!s Theorem 1 in [2] for k / k

Q when the degree 
is prime; but the analogue for general n may be weaker (vid. 1.5). 
However, r(L) +1 £ r(k) - r(kQ) with equality possible only when 
f = n-1. Therefore the estimate in (ii) is at least as good as that 
from (iii) and the rank interpretation for (ii) generalises Gerth's 
Proposition 3.4 in [4] . 

A good knowledge of the unit group of K allows one to obtain 
still better estimates for the divisibility of hfe: 

1.8 Theorem The quotient of ambiguous ideal classes modulo strongly  
ambiguous classes is isomorphic to 

( ( NK/L K > <* V / V A ^ " • 
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G* G - N * 6 F N 
sags « k / V / ( I

k W = ( I K > /1KPK 

" ( IK > / ( I K V = ( IK > / PK 

= {(a)|N K / L a C E L } 7 P / ^ M a c K l ^ a e B ^ 

= ^NK/LK A EL^ ' NK/LEK* T h e f i r s t isomorphism is by Lemma 1.2. The 
subsequent maps are precisely those used by Hasse in [7] la §13: 
multiplication by 1-a, mapping to a generator of a principal ideal, 
and applying the norm for K/L. The isomorphisms are proved by him and 
are straight-forward when Hilbert's Theorem 90 is borne in mind and it 
is observed that N

K ^ L
 a n d e<j commute. 

1.9 Corollary Suppose L/k has u unramified infinite primes. 
Q 

Then the quotient of ambiguous classes modulo strongly ambiguous  
classes has order dividing nU^^[w:WIV^] . In particular, when u=0 
then the quotient is isomorphic to 

<(N K / LK * W ) / ( N K / L E K „ W ) ) E * . 

Proof Let C be the decomposition group of one infinite prime 
divisor in K above the infinite prime i of kQ. By hypothesis, 
C. has order 2 for all but u valuations i. and without loss of 
generality C^cF as n is odd. When C^ has order 2 it is generated 
by y = cf> which inverts elements of N. Write C^Z[GJN for the 
subgroup of Z&|G] fixed on the left by and on the right by N. 

E_VW is torsion free and (vid. e.g. [lo] §4) is isomorphic to a right 
submodule of finite index in 

M = ( ®±C±2L[G]K)M ( 9 . G ) . 
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M is generated by the Ĉ gN = gĈ N where geF and so the effect 
of e„ is determined by the values of C.N'J . 

-1 r 
Suppose <j>a<j> = a so that r has order f modulo n and 

then set 
f-1 rX-l . . f/2-1 i i+f/2 . . „ / 0 

* - i a o ^ i - 5 i — ) < * x v + f / 2 ) . 
i=0 j=0 i=0 2n 

IT is immediately verifiable that (l-a)^ = F(l-a) and that 
a/ _f/2~l i i+f/2 i i ~ ~ ~ - N(y-l) I -(r ' - r )<|> . Hence C.N J = 0 when C. has « 2 l l 1=0 

order 2 and yC.N^ = -C.N^ for all i. Thus M3* t&^Q has 
i 1 LU 

dimension at most ~uf over Q for this choice of 3* . The same is 
therefore true of (E./YD'fr ®__Q and shows that ((N^.K r\ E )W/N E-..W) * 

Li LJU K/Li Li K/Li " 
u f / 2 

has order dividing n 
It remains to consider the subgroup ((N K * W)/(N E n W) ) 

K/L K/L K 
of the group in 1.8 due to torsion in E , W n is contained in the 

K n G denominator because £ = N £ for £ e WcL, If £ e W then, 
K/L 

modulo elements which fix C and multiples of n, we have 
f-1 r1-! f-1 . 

= I I a V =• £ r 1 = (r -l)/(r-l) E 0. So 
i=0 j=0 i=0 

G 3* n 
(W ) e W and there is a natural surjection from 
W^(WAN K )/WNW^ to the group under consideration, given by K/L 

G £/WW —> (C/(N E AW)) . Hence the order of the group divides K/L K 
c n Gl 
[W:W W J. The exact sequence 

1 (N K / LK nW)/(N K / LE K.W) _ (N K / LK ^E L)/N K / LE K 

-» ( NK/L K " EL ) W / NK/L EK- W 1 
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remains exact when fixed by the idempotent e ̂  . So the above bounds 
on the outer two groups of 

1 - « N K / L K . W ) / ( N K / L E K . W ) E ^ ((N K / LK ^ V / N ^ E / ' -

~* ( ( N K / L K " V ^ V A - ^ 6 ^ 1 

place the required bound on the central group and yield the required 
isomorphism between the first two groups when u = 0. 

1•10 Corollary Suppose L/ k
Q has no unramified infinite primes and 

£ generates W rv N K over W r\ N E . Choose a e K such that • K/L K/L K ————— 
1-a 

S = Nir /T a and an ideal OL in K for which (a) = OL . Then the 
K/L " 1 

class of N at generates the ambiguous classes of k/k over the 
—_—.—— J\ / iC O ——————— 

strongly ambiguous classes. 

Proof Under the maps of 1.8 and 1.9 the image of N OL is C ,  K/k 
which generates the group of 1.9. 

1.11 Lemma Suppose k/k is a pure field extension of a totally = = = o — • 
real field. Then the quotient of ambiguous by strongly ambiguous classes  
is isomorphic to 

( N K / L K nW)/(N K / LE KnW). 
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Proof Here L is obtained from kQ by adjoining an nth root of 
unity and so L/k has no unramified infinite primes. Now ^ 

o n — 1 r $ r""̂" generates W/W and assuming (j>cc{> = a gives £ = . So, 
f̂-1 r1-! . . 

modulo elements which fix £/Wn, ^ = 7 T o^cb1 = f. Hence 
î=0 Lj=0 

n > n 
(W/W ) = W/W and e^ acts as an automorphism of the group in 1.9. 
In fact e^ fixes the group. 
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2. The Principal Genus of k/ k
Q-

Let ft denote the Hilbert class field of a field ft, i.e. 
ab 

its maximal abelian unramified extension, and let ft be its abelian 
closure. The (relative) genus field of ft over a subfield ftQ is 
defined to be ft*n ftft^3^; and the associated genus group is the factor 
group of the class group of ft corresponding to this extension of ft. 
The genus group can also be written as a quotient of the group of ideals 
in ft, and then the subgroup factored out is called the principal genus. 

As before, suppose K/ k
Q is a metacyclic Frobenius extension. 

Then K/L is cyclic of odd degree n and its (relative) principal genus 
is known to be P^I^1 ° where a generates Gal(K/L) (vid. [13]). 

K K • 
Hasse!s analogue ([7] la §13) of HilbertTs Theorem 90 shows that this 
is precisely the group P Ker N where KerN is the kernel of the 

ft K/L K/L 
norm map I„ I_ . Thus at e I is in the principal genus if, and only K L ft 
if, N T cx, = N (a) for some aeK. This interpretation also holds K/L K/L 
for the principal genus of k / k

Q by Theorem 2.2 (iii). However, 
the genus number and the ambiguous class number, which coincide for 
K/L need not be equal for k/ k

0* 

The analogue to Hilbert*s Theorem 90 for k/k is: 
o 

2.1 Lemma i) If aek and N a =1 then a = N (3 1 °) 
———— K/K ——— ft/ K 

o 
for some SeKX; 

ii) JJ_ <*elk and Nk/fcOt = (1) then tt= -\/k< -} 
o 

for some hi el„. 
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Proof Let S be a set of representatives for the conjugacy classes 
1—G X of N-l under F. If N a - 1 then a = S for some geK by K/ K 

Hilbert's Theorem 90. Here g a is fixed by F and so a = £ = 

(gl-V-IheFlgeS^"1 . (gl-V§* = ( B - § ) ( W ) f = N^CCe" 5) 1- 0). 
as required. The second part is analogous using Hasse's lemma (op.cit.). 

2,2 Theorem i) The ambiguous class number of k / K
Q is. 

I c

k ' M C K F | / l C K F < 1 " a ) l -
O 

ii) The genus group of k / k
Q is isomorphic to 

F (l-a)F 
O 

iii) The (relative) principal genus of k / k
Q i£ P^I^^""a^F, 

i.e. the group of ideals oi e I- such that N 0 1 = N (a) for 
K K/K K/K, o o 

some aek. 

A comparison of (i) and (ii) shows that for k/k the ambiguous 
o F(l— 0") (1— g)F class number will differ from the genus number if C and C 
K K 

have different orders. This is usually the case for pure fields (vid. 
Section 3). 

Proof The first part is just Theorem 1.1 and the exactness of 

The maximal abelian extension of k unramified over k and with 
o 

degree prime to n is unramified over k Q and so corresponds to the 
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class group C, '. The maximal abelian n-extension of k k o o 
unramified over k is the maximal abelian n-extension of k unramified 

o 
over K. It is therefore the maximal abelian n-extension of L in K* 
which is fixed under F (i.e. under the action of Gal(L/k ) suitably 

o 
extended). The corresponding genus group for this field is 

1 _ eF i-a 
C /C C because the group for the class field of k is 1—e-p ^ p 1—0" C /C = C and the genus group for K/L is C /C K K K K K 
Part (ii) now follows from the exactness of 

1-e 1-g F F F 1-a 1 —>(C ) —• c c / c c —>1. 
K J K K K K 

The genus group itself is therefore H /C 1 NC ^ where 
K k K 

e^ = n ̂ N. Hence the principal genus is the group of ideals with 
1-e 

class belonging to C 1 ^ a ) F ^ From 2.1(ii) this group is 
included in P I ̂  a^ F. Conversely, if a elv and Ol^1 a^ F is in k K ft 

^ „ , ^ , a-a)F(n-N) (l-a)Fn . a class of Cfc then uC ' = CX is in a class of 
™" ̂N (1 ) F ^—^N C^1 .So u. a is in a class of Cfe , and the principal 

(1—o)F 
genus is indeed P I . The equivalence of the other formulation 

K K 
in (iii) is clear using 2.1(ii). 

2.3 Corollary The genus group of k / k
Q is isomorphic to 

N. „ I. /N P. . k/k k k/k k o o 

Proof Apply N to I k/P kI K^ 1 °^F, which is the genus group, and 
use the alternative definition of the principal genus in 2.2(iii) to 
show this is a monomorphism. 
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Now if ae k X and a = NTr /Ta then a = N_ (a/N r / 1 1a^ n 

o K/L k/ ko Hence: 

2.4 Lemma a e k is a norm in k/k if, and only if, it is a ===== o o - - - 1  

norm in K/L. 

For each prime ideal (l£i£t) of k Q which is ramified in 
K/L let \3. be a prime of L above and for a e k x let i 3 i o 
X (a) = ( ayoK/"L ) b e t h e n o r m residue symbol. This yields a map 

1 x t i 

x : k Q
X -> N defined by X(a) = (x-^a) ,x2(a) , . . . , x t < a ) ) . 

2.5 Lemma a e k Q
x is a norm in k / k

Q if, and only if, a e kerx. 

Proof a is a norm in k A Q <=> a is a norm in K/L (by 2.4) 
<=> a is a local norm for every completion of K/L (since K/L is 
cyclic) <=> a is a local norm for each prime ideal of L ramified in 
K (since the oddness of n ensures that no infinite valuation is 
ramified) <=> ( ) = 1 for each conjugate j2 of each prime ideal 

ft < = > < i ^ > = 1 f o r 1 ^ ^ < s i n c e < i ^ 1 > = T _ 1 < i f ^ 
for i e Gal(L/kQ)) <=> x(a) = 1. 

Suppose I is the group of ideals in k which have principal 
norms in k . If at e XTI. and N & = (a) for aek then o N k k/k o 

o 
a homomorphism W : NI k~> x ( k

0 ) / x(E k Q) can be defined by 
XX ot) = x(a) mod x(E, ). 

Ko 
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2.6 Theorem (cf.[5] & [6]) kerX is the principal genus of k/kQ. 

Proof Assume cjt e NI f e satisfies N
k / k ^ = (a). Then by Theorem 

o 
2.2(iii) ox is in the principal genus if, and only if, a£ is a norm in 
k/kQ for some unit £ of kQ, i.e. if, and only if, a£ e kerX. 

When the class number of k Q is prime to n the map /%f can be 

extended to the whole of I. . Choose he 7L such that hh =1 mod n. 
k k h, ° 

For a e I. with N CA ° = (b) we must have ̂ (U) = 1 and k/k , o hhk 

therefore Mj (en) =/X/(tx ° ) = x<b )modx(E ). This is consistent 
ko 

with l)U on as defined above. Clearly for this extended map ker/^ 
is the group of ideals whose h th power is in the principal genus. 

Ko 
Hence: 

2.7 Theorem When h is prime to n the n-subgroup of the genus —————— 
o 

group of k / k
Q is isomorphic to ftU(I^). 

2.8 Corollary When h is prime to n the genus number of k/k 
ko ° 

divides 
h, n^ k o 

K : \ - \ / K
 K J 

o o o 

Proof /)0r(l.) is a subgroup of x(kX)/X(E ) and this is a subgroup  ° ko 
of Nt/X(E ), which has order n t/ [E :N knE ]. By the theorem kQ K q k/kQ kQ 

this bounds the n-componen.t of the genus number, and the factor prime 
to n is given precisely by Theorem 2.2(ii). 
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Remark Putting f = 1 and using the product formula for norm residue 
symbols to replace t by t-1 in 2.8 provides the familiar formula 
for the genus number of K/L. 
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3. Pure Fields of Prime Degree over Q 

Let I be an odd rational prime, C a primitive ilth root of 

unity, and m a positive Xth power free rational integer. For this 

section let k Q = Q, k = Q(Vm), L = Q(£), and K = Q(Vm,£). 

These fields satisfy the hypotheses of the earlier sections. So the 

strongly ambiguous classes are generated by the primes of k which 

are totally ramified over Q. From Wegner [l2] these are the prime 

£-1 2 

ideals dividing (m) and, if m ¿1 mod I , also the prime ideal 

above (I) . Hence: 

3.1 Theorem Let m be an ambiguous ideal of k = Q(Vm). Then 

Oi* = (a) for aeQ defined by N w di = (a). Here a is a product 

o-l , 2 

of Jlth powers, primes dividing m, and, if m f 1 mod I , also  

the prime I. In the case that ui is principal, a is a norm. 

3- 2 Theorem For a rational prime p and aeQX let v

p(
a) e 2 5  

denote the multiplicity of p as a factor of a. Then a is a norm  

in k/Q if, and only if, 

v (a) -v (m) , _x . 
(m P a P ) ( P " 1 ) / £ = 1 mod p 

for all primes p dividing m with p = 1 mod I. 

Proof By Lemma 2.5 a is a norm in k/Q if, and only if, 

X.(a) = ( a ,^ / / L ) = 1 for l̂ î t. Since there is only one prime 
1 Pi 
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ideal in L above (£) the product formula for norm residue symbols 
permits this prime to be ignored if it occurs. The remaining ramified 
primes are the p̂ £ which divide m. Using the properties of Hasse's 
norm residue and power residue symbols (vid. [7] II §11) for the prime 

, , v / , v , , . / a,K/L v > a.m * [] in L above (p) ? (£) one obtains ( —~-— ) = ( -—- ) = 
-V (m) v (a) V (m) - v (a) # » 

< £ i — ^ ) = >• L e t n<P> = <P f ( P )-l>A 
where f(p) is the order of p modulo Then £n(p) = N /rJ3-l. So 

= 1 <=> x n ( p > s 1 mod P <=> x n ( p ) = 1 mod (p) for xeQ. Thus 
/ a,K/L , , , V p ( a ) " Vp ( m\n(p) , A 

\ — ) = 1 <=> ( m a ) El mod p. This congruence is 
automatically satisfied when n(p) = 0 mod p-1, and therefore when l 

does not divide p-1. Otherwise p = 1 mod £, which gives n(p) = (p-l)/£. 
The theorem now follows. 

3.3 Corollary If Oi is an ambiguous ideal of k with UI = (a) 

and a does not satisfy all the congruences of Theorem 3.2 then Qi 
is not principal. 

Proof Combine Theorems 3.1 and 3.2. 

Let {p̂ jl̂ î t} be the set of ramified primes as described above, 
and let {p.|l£i£s} be the subset of p = 1 mod £. Define 

1 V a ) - v
p
( r a ) (P-DA X i

,(a) = (m a ) mod p for p = p i and l̂ is<s. Then 

X (a) = (X-̂  (a), X 2 (a),..., X S <a) ) provides a homomorphism in 
effect from q x to F^s where is the finite field OF I elements. 

By 3.2 the kernel of X* i s t h e subgroup of a e Qx which are norms 
in k/Q. Composing this with the map V : I, Qx given by 
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oi i-* I a| for N

k //Q^
 = (a) yields a homomorphism DO* : IF ̂ S . As 

in §2 the kernel of /](/ * is the group of ideals whose norms are norms of 

principal ideals. Thus, as in 2.6 and 2.7, 

3.4 Theorem ker ttJx is the principal genus of k/Q and d k ) | 

is the genus number. 

3.5 Theorem i) The genus number of k/Q i£ & S, i.e. is  

surjective; 

N 

ii) the order of f]Uy (Ik ) is that of the quotient  

of strongly ambiguous classes by the subgroup of classes representing 

ideals of the principal genus; 

iii) every ambiguous class is strongly ambiguous, if  

and only if, 5 e N K / L E R _or 5 i N

K/L

K-

£ *" 1 2 

Remark ( [9] Lemma 4) £ € NK^LK if, and only if, = 1 mod £ 

for 1£i£t with p i f I. Thus for most m every ambiguous class is 

strongly ambiguous. 

Proof Fröhlich has already proved (i) in [3]. Alternatively, 

(c.f. [l], Theorem 4.2), let q be a rational prime. Fixing the value 

of X i

?(q) only forces q to belong to certain arithmetic progressions 

x s 

modulo p^. Hence X* : Q EF̂  is sur jective even when restricted 

to primes q = 1 mod I. But such primes have prime factors C£ ̂  and 

^£-1 of degree 1 and l-l respectively in k. So v (0^) = q and 
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P/J* = X f

0

v is surjective. Note ;that the ideals Ojr̂  generate the I 

cosets of the principal genus in 1̂ , and give rise to an elementary 

abelian factor group of the class group of k. 

The second part comes from Theorem 3.4 and the last part from 

Lemma 1.11. 

3.6 Theorem (c.f. Fröhlich [3] Theorem 3). Let Is be the order  

N t1 

f̂ /X/1 (Ik ), and let Ü be the number of strongly ambiguous classes. 

Then tf >, max(s' , t-(£+l)/2) and the 1,-class number of k = Q(Vm) 

is divisible by 

zs+t'-s\ 

Proof By Theorem 3.5(i) the genus group provides Is cosets of the 

principal genus and by (ii) of the same theorem the ambiguous ideals 

t1 -s 1 

provide I classes in the principal genus. The lower bound on tf 

is just Corollary 1.7(ii) with Theorem 3.5(ii). 

Remark s,t, and sf can be calculated very easily from m and 

the definition of W and so the given lower bound for t' immediately 

yields a divisor of the &-class number. 
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