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V. 1 Seminaire de ThSorie des Nombres 
21 et 24 Janvier 1980 

Grenoble 

ON THE LOCAL LAN GL AN D S C O N J E C T U R E 

by Helmut KOCH 

One of the main questions of algebraic number theory is to find the 

"right" generalisation of c l ass field theory to nonabelian extensions . 

The first who published some ideas in this direction was E. Artin 

in his Crelle paper of 1931 on the group theoretical structure of the d i s ­

criminant of an algebraic number field, where he generalised the FUhrer-

dikriminantenproduktformel of c lass field theory. I recall this formula : 

let K be a local field and L/K an abelian extension correspon­
ding to the subgroup A of . Let y be a character of 
X 

K /A . The conductor C(y) of x is the minimal number i with 
JLi 

x(U*) = (1} , where U* is the i-th group of principal uni ts . K K 
Then the discriminant tf^/K °^ i s g i v e n 

where g is the prime ideal of K . K 
To x corresponds a character x' o f G(L/K) . We define the con­

ductor of x' by C(x') = C(y) . 

Now let L/K be an arbitrary normal extension with Galois group 

G(L/K) = G and P : G — GL ((D) a representation of the Galois group. 
n 

Then Artin defines a natural number C(p) which is called the Artin con­

ductor of p or more exact the exponent of the Artin conductor. 
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By linearity this notion can be extended to virtuel representa t ions , 

i . e . linear combinations of irreducible representat ions with integer coeffi­

c ien ts . It has the following properties : 

1. C ( P 1 + P 2 ) = Ctpj) + C ( P 2 ) . 

2. Let p be induced from the subgroup H = G(L/F) of G 

and the representation a of H. Then 

C(p) = v R ( * F / K ) Tro(l) + f F / K C ( a ) 

where ^^/K ^ e n o t e s t ^ i e i n e r t i a degree-

3. If G is abelian and \ i s a character of G . Then the 

Artin conductor is the conductor of x defined above. 

By the Theorem of Brauer on induced representat ions C(p) is cha­

racterised by the properties 1. - 3 . 

One has 

A = T T .C(p)dim p 
L/K pirred K 

This is of cause not surprising and is the special case of 2. for 

the regular representation of G(L/K) together with Burnsides Theorem. 

But it indicates that representation and there Artin conductors should 

play an important role in the generalisation of c lass field theory. 

It was only in the sixt ies that a proposal for such a generalisat ion 

was made by Langlands. This is a global theory about the correspondence 

of Artin L-ser ies and general isat ions of c lass ica l and Hecke L-se r i e s . I 

shall speak here only about the local aspects of this theory and also 

about a special case which is however general enough to be a good gene­

ralisation of local c l a ss field theory. 
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We need a generalisation of K and take for it the multiplicative 
x 2 group D of a central division algebra D over K of degree n . n n * 

By a standard construction we get D in the form 
n 

D = ] S a n v | a €K , n n = n , n a = 9 a n for a€K ( , 
n (v = o n ) 

where is the unramified extension of K of degree n , 0 is a 

generating automorphism of G(K /K) and n is a fixed prime element 
^ K 

of K . 

The ring 0 of integers of D is given by 
n 

( n - 1 v ) 
0 = E a v n V | a v € O K n . 

(v = 0 J 
where is the ring of integers of , and the maximal ideal is 
*P = TTO . 

x i i D is a topological group with the groups U = 1 + *D n 
i = 1 ,2 , . . . , as bas is of neidbourhoods of the unit. 

D denotes the set of equivalence c l a s se s of irreducible represen-n 
tat ions P such that Ker p is closed and has finite index in D . We 

n 
call this representations irreducible finite representat ions . The maximal 

number j with p(l+<^) {l} is called the index j(p) of P . If 

p(l = {1} we put j(P) = 0 . 

On the other hand let = G(K/K) be the Galois group of a 

separable algebraic closure K of K . A continuous representation 

p : G —•GL (C) factors through a finite factor group G(L/K) and the K n 
Artin conductor of P as representation of G(L/K) is independent of the 

choice of L . Therefore we have the notion of Artin conductor of P as 

representation of G . In the following it is in fact more convenient to 
K 

work with a modification of the Artin conductor : the Swan conductor j(p) 

which is defined as follows 
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j(p) = C(p) - dimp if C(p) > 0 

j(p) = 0 if C(p) = 0 . 

In this connection it is also convenient to introduce the Swan dif­

ferent exponent j(L/K) of an extension L/K : 

j(L/K) = d(L/K) - e(L/K) + 1 , 

where d(L/K) is the different exponent and e(L/K) the ramification 

index of L/K . 

Let R be the set of equivalence c l a s se s of irreducible represen-n 
tations p of G with d imp |n . K 

Now the local Langlands conjecture can be formulated as follows : 

there is a one to one correspondence $ of R and D with the 
n n n 

following properties : 

1. $^ is induced by the reciprocity map. (In the following, we 

identify X € Rj and $ x ) . 

2 . If X € R is one dimensional then $ v = XNr. / v , where 
n n i J n / K 

N-n denotes the reduced norm, ^ n 

3 . $ (p®X) = $ P ® $ x , 
n n n 

4. J(* n(p)) - j ( p ) n / d i m p , 
5. $ plK X = ( d e t p ) n / d i m p . 

n 1 

6. For the e-factors associa ted to p and $ p we have 
t ,n /dimp , x e(p) = e($ p) . n 

For n = 2 , $ 2 i s unique and ex i s t s . This was shown for residue 

characterist ic p ^ 2 in Jacquet-Langlands [ 3 ] and for p = 2 in almost 

all cases by Tunnell [ 9 ] with a global argument, finaly by Gerardin and 

Kutzko in all cases with a local argument (International Congress of 

Mathematicians Helsinki 1978). 
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For n > 2 , §^ is not uniquely determined by 1. - 6. 

If p j n , then one can construct a map $' : R —*-DX which 
n n n 

sat isf ies 1. - 4. but not 5. , 6 . through it may be not too difficult to 

satisfy also 5. and 6. (see C5]). After some minutes I shall come back 

to this c a se . 

The real difficult case is the wild case p | n . In the moment it 

seems that there is no method for finding $ in this c a se . But one can 
n 

formulate the following weaker conjecture , which I shall call the numeri­

cal Langlands conjecture : let 
R n 0) = | p € R

n I J (p)n/dimp=j , ( $ 1 d e t p ) n / d i m p ( T T K ) = l | , 

D n ( j ) = | p € 6 n 1 j ( p ) = j ' p ( T T K ) = 1 ( ' 

where n is a fixed prime element of K . 
K 

cardR (j) = cardD X ( j) (1) n n 

THEOREM 1. - (1) is true for p/{n . 

THEOREM 2. - (1) is true for n = p . 

In the following I shall speak mainly about the proof of theorem 2. 

(for the details see [ 6 ] ) , but first I say some words about the tame case 

P/fn . 

The representations in R and in D can be parametrised by the 
n n 

same ob jec t s , the so called admissible pairs (L/K,x) / where L/K is 

an extension of degree a divisor n and x is a character of L with 

C L X : K e r \ ] finite. The following two conditions must be fulfilled. 
1. If X = X 'N L ^ L , on L X with K c L ' c L , then L' = L . 

2. Let be the group of principal units of L . 
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If X = X'Njy^, on then L/L' is unramified. 

Two pairs (L^ /K^j ) / (L2 /K,X 2 ) are called equivalent if there 

exis ts an isomorphism r\ : —^L^ such that Xj = X2'H • 

Given an equivalence c lass of admissible pairs (L/K,x) it is easy 

to associa te to it a representation p in : p = indQ^X . The condi­

tions 1 . , 2 . mean that p is irreducible and that our map 

{(L/K,x)}—*-R is infective, n 

So the sole problem is that the map is also surjective. To prove 

this one must know that the representations in R are induced from 
n 

characters . One can deduce this from Clifford-Mackey theory. 

x 
Now we want to associa te to (L/K,x) a representation in . 

Since the degree of L/K divides n there is an injection LC—^D 
n 

Let be the centralicer of L in . Then X' =; XNDjyL i s 

a character of D . Furthermore there is an induction process which is 
much more complicated as the usual one. It leads from X* to a represen­
tation of D X , which we associa te to (L/K,X) . For the detai ls see [ 5 ] . 

n 

Now we come to the main question of this t a lk , the Langlands cor­

respondence in the case n = p . 

1 . - Representations of . 

These representat ions were constructed by Howe [ 2 ] and Tunnell [ 9 ] 

saw how to compute the number 

D(j) = card D X ( j ) if (j,p) = 1 . 
P 

This idea is so simple and nice that I want to reproduce it here : 
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from the resul ts of Howe follows, that dim p = - 2 — ! . ^ p ^ for 
~ x q _ 1 

p€D p ( j ) . The dimension of a representation depends only on its index 

J . 

Now a representation p € D (j) is the same as a representation of 
X j +1 ^ X i the group D / U (n ) which is not representation of D / U (TT ) . 
P J\ P K 

X l-hl 
We consider Burnside's formula for D / U (TT ) and get 

P K 

c a r d D ^ / U J + 1 ( n K ) = D ( J ) ( ^ j q ( M ) ( P - D / 2 ) 2
 + C A R D D * / ^ ) 

and therefore 
D(j) = p f a - n V " 1 . 

It remains the case p | j . One says that p € D X is in general 
P x 

position or in french primordial if there is no character x of Dp such 

that j(p®x) < J(p) • From Howes resul ts one can compute dimp for 

a representation in general position. Furthermore it is easy to show that 
j(p®X) ^ maxjj(p) J(x) | with equality 

if j(p) ^ j(X) . I said already that we get each x in the form X ' N D ^ / K 

Then j(x) = pj(x') . Hence we obtain the representations which are not 
in general position with index j by tensoring representations of index 
smaller j with characters of index j . Taking this in mind one can 
again use the idea of Tunnell to compute the number A(j) of representa­
tions in D (j) which are in general position. 

P 

2. - Representations p of R with p 1 j(p) .  — p 

We have the same situation as with the representations of D 
P 

with p |j(p) . One says that p is in general position if there is no 

character X of K such that j ( p ® X ) < j(p) . Concerning the compu­

tation of j(p®x) o n e has j(p®x) * maxjj(p) ,pj(x)j with equality if 

j(p) it PJ(X) . Here it is essent ia l that p is irreducible. Concerning 
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the nature of representations in general position one has the following : 

PROPOSITION 2.1 - Let p|j(p) . Then p is in general position  

if and only if p is induced from a character of the multiplicative  

group of Kp , the unramified extension of K of degree p . 

From the conductor formula for induced representation which I men­

tioned at the beginning of my talk we get j(p) = pj(x) . Therefore it is 
G K 

clear that a representation of the form p = i ndpv X sat isf ies pij(p) . 

The other direction of the proposition is more difficult. One has to 

consider the case of induced and primitive representation separately and 

the most essent ia l part of the proof is to show that a primitive represen­

tation p with p | j (p) is always not in general position. This case is 

reduced to the induced case by the following theorem on primitive repre­

sentations ([4]) : 

Let p be a primitive representation and let G be the kernel of 

the corresponding projective representation. Furthermore let T/K 

be the maximal tamely ramified sub extension of L/K . Then the 

restriction of p to G T is irreducible and induced. 

W. Zink has proposition 2 . 1 . generalised to the following 

THEOREM. - If p € c L then dimp|j(p) if and only if p is indu- 

ced from an unramified extension E/K and a representation of G £  

which is not in general position. 

Now it is easy to compute the number A(j) of p € R

n 0 ) which are 

in general position. One finds A(j) = B(j) . Thus we are reduced to the 

case pj(j(p) and we have to show that cardR p (j) = p ( q - l ) ^ * . 

We consider first induced and then primitive representat ions the for­

mulas which one get look much more complicate than the formula above. 
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But I don't see any method to count induced and primitive representations 

together, the methods in both cases are different. 

3 . - Induced representations p€R with p/fj(p) . 
P 

Induced representations of degree p are of the form 

(E/K,x) = i n d G £ x , 

where [E:K] = p and x is a finite character of E which we identify 

with the corresponding character of G . 
J_i 

First of all we need a criterion for the irreducibility and equivalence 

of such representat ions. It is more convenient to work with normal exten­

s ions , therefore we make a base change F/K which garantees that 

EF/F is normal. It is easy to see that the maximal extension of K of 

exponent p-1 is sufficient. This F/K is the tamely ramified abelian 

extension F = K _( Vrv) . 
p-1 K 

Mackeys irreducibility criterion for induced representations than 

leads to the following 

Criterion. 

(E/K,x) is irreducible if, and only if, the character x of H = EF 

with 

X(x) = X N ^ a x / x , where (a) = G(H/F) , 

is nontrivial. 

If p/fj(E/K,y) , then this is the case if, and only if, 

j( X) > d ( E A ) / p - 1 - l = j ( E / K ) / ( p - 1 ) . 

In this connection one finds also eas i ly 

J(X) = a ( x ) - l = e ( F / K ) a ( x ) - ( p - D d ( H / F ) - l . (1) 
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Now we come to the question of equivalence. There is a general 

criterion which is similar to the irreducibility criterion above : two 

representations (E/K,x) and (E'/K,x') of of degree p are 
K 

equivalent if, and only if, there exis ts r\ € Gv with 
K 

^ V E E ' A T V X ' V E E ' / E - • (2) 

We consider the question of equivalence in more detai l . If E and Ef 

are conjugate over K : . E' = v\E . Then (E'/K,x') is equivalent to 

(E/K.x* in) . Therefore this case is sett led by the following : 

PROPOSITION 3. 1. - If (E/K,x) is equivalent to ( E ' / K ^ ' ) and 

E,E' are conjugate over K then there is an isomorphism r\ : 

E—^E' such that X = X'r) . 

This looks trivial but is trivial only in the case that E/K is 

normal. Nevertheless the more interesting case is the case that (E/K,X) 

is equivalent to (E'/K,X') with E1 not conjugate to E over K . If 

such an (E f/K,x') ex is ts we say that (E/K,x) is of the second kind. 

The following two propositions express the main properties of representa­

tions of the second kind. 

PROPOSITION 3 .2 . - Let F be a normal extension of K such  

that (CF:K],p) = 1 , H = EF , H' = E'F are normal over F , 

L = HH' , as above U = Ker£ c H X . Then 

1. L / H corresponds to U in the sense of c l ass field theory, 

therefore L / H is independent of the choice of E' , X1 

2. j(L/F) = j(p)(p-l)e(F/K) 
x l 3(T) 

3 . Let 3 : G(F/K) —• Z/pZ be given by TQT" 1 = a for 

T € G ( H / K ) , o 6 G ( H / F ) and let : G(H7K) — Z p / Z X be defined  

in the same manner, then 3 ' = 3 " 1 • 
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Proof. -

1. If (E/K,x) is equivalent to (E'/K,x') , then , if we go over 

from (E/K,X) to (TI^E/K^XTI) , we have by (2) 

X N L / E X = X ' N L / E ' x f o r x € I j X • 

Let a€G(L/F) such that the restriction of a to H generates the 

group G(H/F) and that the restriction of a to H' is tr ivial . We put 

x = ay /y with some y € L . Then 

x N H / E a ( N L / H y ) / N L / H y = X ' N L / E ' a y / y = 1 ' 

It follows N j y H L X c Kerx c H X , where | H X : N ^ L ^ J = p . 

Since (E/K,y) is irreducible, we have KerX ^ H X , therefore 

N L / H L X = KerX . 

2. d(L/F) = pd(H/F) + d(L/H) = pd(H/F) + (p-l)a(X) . 

Therefore by (1) 

j(L/F) = d(L/F) - (p 2 - l ) = p(J(H/F)+p-l) - (p 2~l) + (p-l)(e(F/K)a(x)) 

- (p-l)(j(H/F)+p-l) - 1 = j(p)(p-l)e(F/K) . 

We omit the proof of 3 . which is more difficult. Now we formulate a 

conversion of the last proposition : 

PROPOSITION 3 . 3 . - Let E/K be a ramified extension of degree 
x 

p , H = EF and U c H a subgroup with the properties 

(i) (HX : U) = p 

(ii) TX = X P ( t ) - 1 (mod U) for T Ç G ( H / K ) , x Ç H X . 

Viii) The index a of U satisf ies the conditions 

a S - j (H/F)/(p- l) (mode = e(F/K)) 

a jà 0 (modp) . 

x ** 
Then it ex is ts a character y of E such that U = Kery . 
The extension L corresponding to Û is normal over K by (ii). 
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If G(L/F) = Z/pZ x Z/pZ then (E/K,x) is of the second kind. The two 

last propositions reduce the counting of induced representation to the 

counting of field extension with certain given properties which is possible 

by c lass field theory and is similar to the procedure of Tunnell in the 

case p = 2 . The result is the following : 

Let I(j) be the number of induced representat ions in R (j) . Then 

Ki) = p ( q - i ) 2 , H ( 1 . A ( ) ) q [ r / p ( p - l ) ] - C r / ( p t i ) ] ) 

where r = (p-l)j ^ 0 (mod p) 

A(j) = 1 if r<p(p+l)v K (p) , r ^ 0 (modp+1) 

Mi) = [ f ] [ ^ j i f r < P ( P + 1 ) v

K

( p ) ' r s 0 ( m o d P + 1 ) 

A(J) = 0 if r>p(p+l )v v (p) • 

4 . - Primitive representat ions p € R p with p/f j (p) . 

Primitive representat ions are best classif ied by considering first pro­

jective representat ions and then going over to linear representation : 

p : G„ • GL (C) 
is. n 

\ I 
PGL (C) = GL (C)/C n n 

Projective primitive representations are projective representat ions whose 

liftings are primitive representat ions. They were classif ied in my paper 

[ 4 ] which I mentioned above, but I could not calculate the conductor of 

these representa t ions , which is defined to be the minimum of the conduc­

tors of the liftings. This then seemed to be the most difficult question in 

the representation theory of local Galois groups. Buhler [ l ] and Zink Ll2] 

were able to compute this conductor in the case n = p but the proof is 

rather complicate. I am going now to give a very simple proof : 
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THEOREM. - Let p : G R—•PGL ((C) be a primitive representation  

and let G^ = Kerp , the maximal tamely ramified sub extension of 

L/K . Then 

j(o) = , j ( L / T ) . ,  H p ) (p-l)e(T/K) • 

Proof. - I mentioned already above that the restriction of a primi­

tive representation to the ramification group remains irreducible. Let p 

be a lifting of p with j(p) = j(p) and p T the restriction to G(L/T) . 

Then it is easy to see from the definition of the Artin conductor that 

j(p T ) = e(T/K)j(p) 

G(L/T) is the direct product of two cyclic groups of order p . Further­

more p is an induced representation of the second kind which is in­

duced from each of the sub extension of L/T of degree p as was 

proved in my paper [ 4 ] . Therefore we can apply proposition 3.2 with 

F = T ( T plays here the role of K ) , 

j(L/T) = (p-l)j(p T) . 

This proves the formula. 

On the basis of this formula one can compute the number of primiti­

ve projective representations with given Swan-conductor j , which was 

essent ia l ly already done by W. Zink C l l ] . 

The transition to linear representation is easy on the bas is of the 

following 

THEOREM. - Let p be a primitive representation of dimension p 

and cp a character of G . Then p®cp is equivalent to p if, 

and only if, cp = 1 . 

For p = 2 this was proved by Tunnell by global argument. Already 

after my talk in Grenoble, E.-W. Zink found that the theorem can be 

generalised to the following 
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THEOREM OF ZINK. - Let G be a finite group and let cp be a 

one dimensional representation of G . We denote the kernel of cp 

by H . Then for all irreducible representat ions p of G the 

following statements are equivalent : 

(i) p®cp is equivalent to p , 

(ii) p is induced from a representation of H . 
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