The models of a non-multidimensional ω-stable theory
Groupe d'étude de théories stables, Tome 3 (1980-1982), Exposé no. 10, 22 p.
@article{STS_1980-1982__3__A10_0,
     author = {Pillay, Anand},
     title = {The models of a non-multidimensional $\omega $-stable theory},
     journal = {Groupe d'\'etude de th\'eories stables},
     note = {talk:10},
     pages = {1--22},
     publisher = {Secr\'etariat math\'ematique},
     volume = {3},
     year = {1980-1982},
     zbl = {0523.03022},
     language = {en},
     url = {http://archive.numdam.org/item/STS_1980-1982__3__A10_0/}
}
TY  - JOUR
AU  - Pillay, Anand
TI  - The models of a non-multidimensional $\omega $-stable theory
JO  - Groupe d'étude de théories stables
N1  - talk:10
PY  - 1980-1982
SP  - 1
EP  - 22
VL  - 3
PB  - Secrétariat mathématique
UR  - http://archive.numdam.org/item/STS_1980-1982__3__A10_0/
LA  - en
ID  - STS_1980-1982__3__A10_0
ER  - 
%0 Journal Article
%A Pillay, Anand
%T The models of a non-multidimensional $\omega $-stable theory
%J Groupe d'étude de théories stables
%Z talk:10
%D 1980-1982
%P 1-22
%V 3
%I Secrétariat mathématique
%U http://archive.numdam.org/item/STS_1980-1982__3__A10_0/
%G en
%F STS_1980-1982__3__A10_0
Pillay, Anand. The models of a non-multidimensional $\omega $-stable theory. Groupe d'étude de théories stables, Tome 3 (1980-1982), Exposé no. 10, 22 p. http://archive.numdam.org/item/STS_1980-1982__3__A10_0/

[1] Bouscaren (E.) and Lascar (D.). - Countable models of non-multidimensional ω-stable theories (to appear). | Zbl

[2] Lachlan (A.H.). - Spectra of ω-stable theories, Z. für math. Logik, t. 24, 1978, p. 129-139. | MR | Zbl

[3] Lascar (D.). - Ordre de Rudin-Keisler et poids dans les théories stables (to appear). | MR | Zbl

[4] Lascar (D.). and Poizat (B.). - An introduction to forking, J. of symb. Logib, t. 44, 1979, p. 330-350. | MR | Zbl

[5] Shelah (S.). - Classification theory and the number of non-isomorphic models. - Amsterdam, New York, Oxford, North-Holland publishing Company, 1978 (Studies in Logic, 92). | MR | Zbl