Groupe D'Étude En THÉORIE ANALYTIQUE DES NOMBRES

John A. Haight
An F_{σ} semigroup of zero measure which contains a translate of every countable set

Groupe d'étude en théorie analytique des nombres, tome 1 (1984-1985), exp. no 29, p. 1-9
http://www.numdam.org/item?id=TAN_1984-1985_1_A11_0
© Groupe d'étude en théorie analytique des nombres
(Secrétariat mathématique, Paris), 1984-1985, tous droits réservés.
L'accès aux archives de la collection « Groupe d'étude en théorie analytique des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

AN F_{σ} SEMIGROUF OF ZERO lWASURE VHICH
CONTAIHA A TRATSLGTE OR EVGRY COUNTABLE SEm
by John A. HAIGHII (*)

In 1942, PICCARD [10] gave an exarple of a set of real numbers whose sun set has zero Lebesgue Leasure but whose difference set contains an interval. ibout thirty years later, various authors (CONNOLLY, JACKSON, WILLIAMSON and WOODALL) in a series of $\mathrm{jaj}_{\mathrm{j}}$ ers constructed F_{σ} sets $E \subset \mathrm{R}$ such that $E-\mathbb{C}$ contains an interval while $L((k) E)=0$ for progressively larger values of k, where

$$
(k) \mathbb{E}=\left\{x_{1}+x_{2}+\ldots+x_{k} ; x_{i} \in \mathbb{E}, 1 \leqslant i \leqslant k\right\}
$$

These authors' interest was in an approach to the construction of asmuetric Raikov systems, [5], defined as follows.

If G is a locally conpact abelian group, a Raikov systen is a fakily fof F_{σ} subsets satisfying the following conditions :
(a) If $F_{1}, F_{2}, \ldots \in \mathscr{F}$ then $\bigcup_{n=1}^{\infty} F_{n} \in \mathscr{F}$.
(b) If $F_{1} \subset F_{2} \in \mathscr{F}$ and F_{1} is F_{σ} then $F_{1} \in \mathscr{F}$.
(c) If $F_{1}, F_{2} \in \mathscr{G}$ then $F_{1}+F_{2} \in \mathscr{F}$.

A Raikov systen is said to be asymictric if $A \in \mathscr{F}$ does not necessarily inply $-A \in \mathscr{F}^{\text {. }}$

CONNOLIY and GILIIAMSON [3] noted that the existence in $\underset{\sim}{R}$ of an asyimetric Raikov syster which was naximal among proper Raikov systens was equivalent to the existonce of an F_{σ} senigroup of zero Lebesgue neasure which is not contained in any proper subgroup of \mathbb{R}, which in turn is equivalent to the existence of an F_{c} set E such that $E-\mathbb{E}=\underset{\sim}{R}$, but $m((k) E)=0$ for $k=1,2, \ldots$. I was able to solve this problen, although unfortunately the central idea was rather obscured by technical details. Recently, however, BROWN and MORAN [1] have sinplified ky proof. The results of this paper are a generalization of this sinplification.

If R is a ring and $\alpha, \beta \in \mathbb{Q}$ and $E, F \in R$, we write

$$
\alpha \cdot \mathcal{E}+\beta \cdot F=\{\alpha \cdot \mathrm{x}+\beta \cdot \mathrm{y} ; \quad \mathrm{x} \in \mathbb{E}, \quad \mathrm{y} \in \mathrm{~F}\} ;
$$

if E is finite, $|E|$ denotes the number of elewents in E. In this notation, the staterent $\mathbb{E}-\mathbb{E}=R$ is equivalent to the statement that, for every $F \subset R$ such

[^0] LONDON WC 1 E 6BT (Grande-Bretagne).
that $|F| \leqslant 2$, there is a $c \in R$ such that $F+\{c\} \in D$. (Prow now on, we shall writc " c " instead of " \{c\} ". This leads to the question : If (k) E is "rrall", how "large" is the earily of sets F that can be translated into ?

Fow any $n \in \mathbb{N}$, we write $I(n)=\{0, \ldots, n-1\}$ and $\underset{\sim}{Z}(n)$ for the integers nodulo n.

THEOPF 1. - For all $j, n \in \mathbb{N}$ and $s>0$, there is an $N=N(j, n, 0)$ such that, fon any $N \geqslant N$, there is a subset A of $\underset{\sim}{Z}(M)$ such that
(a) If $P(\underset{\sim}{Z}(i),|T| \leqslant n$, thereisa $c=c(F)$ such that $F+c \in A$.
(b) \mid (j) $A \mid M^{-1}<e$.

If $\mathrm{r}_{j}=I(\mathrm{n})^{n}, i=1,2, \ldots$, for sowe $n>1$, wo shall say thet the set $C=\left\{\sum_{i=1}^{\omega_{i}} X_{i} L^{-i} ; X_{i} \in F_{i}\right\}$ is a Cantor set. If $\left|F_{i}\right| \leqslant r$, wo shall say $C \in b(n, r)$. If $F_{i}=F, j=1,2, \ldots$, we shall say that $C(\in b(m,|F|))$ is self-sililar.

Mavan 2. For any $n, r, j \in \mathbb{N}$ and $e>0$ there is an $N=\mathbb{N}(j, r, e)$ and a sflf-sinilar Cantor set $K \in{\underset{\sim}{R}}^{n}$ such that
(a) For any $F \in b(N, r)$, there is a $d=d(r)$ such that $F+A C K$,
(b) $(j) K \in b(N, \in N)$.

We note that (a) inplies that if F is any finite set containing not rore than r wints, then thore is a c such that $F+c \subset \mathbb{K}$.

THBOREM 3. - There is an F_{v} set $E \subset \mathbb{R}^{n}$ such that
(a) If $F \subset{\underset{\sim}{R}}^{n}$ is a countable set, there is a $c=c(F)$ such that $F+c \in E$.
(b) Por any $k \in \mathbb{N}, \quad \operatorname{ra}((k) E)=0$.

CASBLiN [2] proved that if $\lambda_{1}, \ldots, \lambda_{x}$ are real nunbeis, therc is a number α such that $\|\left(\alpha+\lambda_{i}\right) u_{\|}>c / u, u \in \mathbb{N}, i=1, \ldots, r$ ($\| x_{i}$ denotos the distance of x fron the nearest integer to $x, c=c(r))$.

In our notation $\left\{\lambda_{1} \ldots \lambda_{r}\right\}+\alpha \in B_{r}$

$$
B_{r}=\left\{x ; \quad \mid x u_{\|}>C(r) ; \quad u, u \in \mathbb{N}\right\}
$$

Let $B=U_{r \in N} B_{r}$, then B is the set of "badly approxina?le numbers". It is well-known that $B=U_{n \in N} F(m)$ where $F(n)$ is the set of numbers whose continued Praction oxpansions have partial quotients $\leqslant \mathfrak{n}$ and that $m(B)=0$. However,
 (4) $F(2)=\underline{R}$) DAVENPORT and SCHMTDT ([4], [11]) extended Cassels' result in various wayis. In particular, Schmid's theorem implies that, or every counteble Rer n there ia an $\alpha \in \underline{R}^{n}$ (actually many such α) such that $F+u G B$ whera B in \mathbb{R}^{n} is defined as

Again $\mathrm{n}(\mathrm{B})=0$, and (2) $\mathrm{B}=\underline{\mathrm{R}}^{\mathrm{n}}$.
Proof of Theorens.
Lrivis 1. - For all $j, n \in \mathbb{N}$ and $\varepsilon>0$, there is an $\mathbb{N}=\mathbb{N}(j, n, \varepsilon)$ and a subset A of $\underset{\sim}{Z}(\mathbb{H})$ such that
(a) If $F \subset \underset{\sim}{Z}(\mathbb{N}),|F| \leqslant n$, there is a $c=c(F)$ such that $F+c=A$.
(b) $|(j) A| M^{-1}<c$.

If $x, y \in{\underset{\sim}{R}}^{n}$ for sone $n \geqslant 1$, write

$$
x \cdot y=x_{1} y_{1}+\ldots+x_{n} y_{n} .
$$

Lema 2. - Given $N, j, n \in \mathbb{N}$ and $\varepsilon>0$, there is an $N=N(\mathbb{N}, j, n, \varepsilon)$ such that for each $j \in I(\mathbb{N})^{n}$, there is $c=c(j) \in I(\mathbb{N})$, such that if $c^{*}=(c, \cdots, a)$ and
$\mathbb{Z}=\mathbb{E}(\mathbb{N}, \mathbb{N})=\left\{x ; \quad x \in I(\mathbb{N}), \quad x \equiv g \cdot\left(j+c^{*}\right) \operatorname{nod} \mathbb{N}, \quad g \in \mathbb{X}(\mathbb{N})^{n}, \quad j \in I(\mathbb{N})^{n}\right\}$, then $|(j) E| \mathbb{N}^{-1}<c$.

If $H \geqslant 2$ this is stronger than lemaa 1 . For if $F=\left\{i_{1}, \ldots, j_{n}\right\}$, then $j=\left(j_{1}, \ldots, j_{n}\right) \in I(\mathbb{N})^{n}$ and, taking $g(i)=\left(0, \ldots, 1\left(i^{\text {th }}\right.\right.$ place $\left.), \ldots, 0\right)$, wo have $g(i) \in I(\mathbb{M})^{n}$, and so $g(i)\left(j+c^{*}\right) \in \mathbb{E}$, that $i s j_{i}+c \in \mathbb{E}, i=1, \cdots, n$.

Proof of Lema 2. - Fix n. We use induction on j. Assume the leuma holds for some j and for all \mathbb{M}, ε.

Given,ϵ, let $T=N(2 \pi, j, n, \varepsilon / 2)$. Let $G=\left\{g ; g: E \rightarrow=I(M)^{n} \backslash\{(0, \ldots, 0)\}, F \subset I(T)^{n}, 0<|\mathbb{P}| \leqslant j+1\right\}$.

Let $\hat{\sim}=|G|$, and let $\phi: I(\ell) \rightarrow G$ be a bijection.
Wow choose prines $P_{0}<P_{1}<\ldots<P_{2-1}$ such that
(a) $P_{0}>n \mathbb{N T}$,
(b) $\sum_{C \leqslant i \leqslant i-1} \frac{1}{P_{i}}<\varepsilon / 2$.

Let $P=P_{0} \times \ldots \times P_{R-1}$ and let $S=P i$.
For $j \in I(s)^{n}$, let $j^{\prime} \in I(T)^{n}$, where $j_{i}^{\prime} \equiv j_{i}$ nod I^{1}, we choose $c(f)$ to satisfiy (1) and (2)
(1) $c(j) \equiv c\left(j^{1}\right) \operatorname{nod} T$
(2) $\phi(x)\left(j^{3}\right)\left(j+c^{*}(j)\right) \equiv 0$ Liod P_{r}
if $j^{\prime} \in \operatorname{don} \phi(r)$, otherwise let $c(j) \equiv 0 \bmod P_{r}, r=0, \ldots, 2-1$.
We need to show that (2) is possible. If $j^{\prime} \in$ don $\phi(r)$, then $\phi(r)\left(j^{\prime}\right)=\lambda$ say, where $\lambda \in I(i)^{n} \backslash\{(0, \ldots, 0)\}$ so
$\phi(r)\left(j^{\prime}\right)\left(j+c^{*}(j)\right)=\lambda\left(j+c^{*}\right)=\lambda_{1} j_{1}+\cdots+\lambda_{n} j_{n}+c(j)\left(\lambda_{1}+\ldots+\lambda_{n}\right):$
How $0<\lambda_{1}+\ldots+\lambda_{n} \leqslant n$ so condition (b) ensures that we can eind $c(j)$ so that the above equation is concruent to zero nod P_{i}.

Now if $x \in(j+1) E(i), s)$,

$$
x \equiv \sum_{i=1}^{j+1} i^{(i)}\left(j^{(i)}+c^{w^{(}}\left(j^{(i)}\right)\right) \bmod S
$$

for sor:e $i^{(i)} \in I(i)^{n}$ and $j^{(i)} \in I(3)^{n}, i=1, \ldots, j+1$.
Ve have two cases :
Case 1. - $j^{(s)_{i}}=j^{(t)}$, for sone $s \% t$. Then
$X^{\prime}=\sum_{i=1}^{j+1} n^{(i)},\left(j^{(i)}, c^{*}\left(j^{(i)}\right)^{\prime}\right)$
$\left.=\sum_{\substack{1 \leqslant i \leqslant j+1, i \neq s, t}} i^{(i)_{1}}\left(j^{(i)}\right)+c^{*}\left(j^{(i)}\right)\right)+\left(\lambda^{(s)}+\lambda^{\left.(t)_{i}\right)}\left(j^{(s)}\right)+c^{*}\left(j^{\left.\left.(s)_{i}\right)\right)}\right.\right.$
so $x \in(j) E(2, T)+T Z$.
Qase 2. - $j^{(s)}, j^{(t)}$, only if $s=t$. Then there is an $r, 0 \leqslant r \leqslant 2-1$, such that

$$
\phi(r)\left(j^{(i)}\right)=\lambda^{(i)} \text { for } i=1, \ldots, j+1 .
$$

So

$$
x=\sum_{i=1}^{j+1} \not \phi(r)\left(j^{(i)}\right)\left(j^{(i)}+c^{i f}\left(j^{(i)}\right)\right) \in F^{Z}
$$

Thus wo have

$$
(j+1) E(H, S)+S \cdot Z \subset\left(U_{r=0}^{2-1} P_{r} \cdot Z\right) u((j) E(2 H, T)+T \cdot \underset{Z}{Z})+S Z,
$$

so $|(j+1) E(3)| S^{-1}<e / 2+e / 2=e$.
Ne Lodify the argurient for $j=0$: take $T=1$ and $G=I(N)^{n} \backslash\{(0, \ldots, 0)\}$ and use (2) (only) to define $<(j)$. Then if $x \in E(M, s)$,

$$
x=\lambda\left(j+c^{*}(j)\right)=\phi(r)\left(j+c^{*}(j)\right) \text { for sone } r \text {. }
$$

so $x \in U_{0 \leqslant r \leqslant i-1} P_{r} \cdot z$.
LFinA 3. - For any $j, n \in N$ and $a>0$, there is an $N \in \mathbb{N}$ and an $E \subset$ T (where $\underset{\sim}{\sim}$ is R nodulo 1) such that
(1) \mathbb{C} consists of a finite union of alosed intervals.
(2) If $G G \mathbb{T}$ and $|G| \leqslant n$, there is a $d=d(G)$ such that $G+d C E \cdot$
(3) $\mathrm{Li}\left((\mathrm{j}) \mathrm{f}+\mathrm{r}^{-1}(0,5 j)\right)<\epsilon$ for all $r>\mathbb{N}$.

The difference between Lema 1 and Theoren 1 is that the modulus of Lerra 1 has to be the product of very large prines. We need Lennla 3 to show that, rather surprisinfly, any sufficiently large modulus will do.

Proof of Lema 3 （assuring Lemia 1）．－Let $\mathbb{T}=\mathbb{N}(j, n, e / 6 j)$ ，where \mathbb{N} is as in Lemina 1．Let $E=N^{-1} A+\left\{0, N^{-1}\right\}$ ．We show that B has the required pro－ perties
$(j) E+\mathbf{r}^{-1}(0,5 j 〕)$

$$
=(j) N^{-1} A+\left\{0, j N^{-1}\right\rceil+\left(0,5 \vdots r^{-1}\right) \subset(j) N^{-1} A+\left(0,6 j N^{-1}\right\rceil
$$

so $\mathrm{n}\left((\mathrm{j}) \mathrm{E}+\boldsymbol{r}^{-1}[0,5 \mathrm{j}\rangle\right) \leqslant|(\mathrm{j}) \mathrm{A}| \times 6 \mathrm{j} / \mathrm{N}<\varepsilon$ ．
Now G can be covered by at Liost n intervals of the form $〔 i / \mathbb{N},(i+1) / \mathbb{N}$ ）， $i \in \underset{\sim}{Z}$ so

$$
G \subset N^{-1} F+\left(0, N^{-1}\right) \text { for some } F \subset \underset{Z}{Z}(N) \text { where }|F| \leqslant n \text {. }
$$

If $c=c(F)$ ，we have

$$
G+c / N C N^{-1}(F+c)+\left(0, \mathbb{N}^{-1}\right) \subset \mathbb{N}^{-1} A+\left\{0, \mathbb{N}^{-1}\right\}=E,
$$

which gives（2），taking $d=c / \mathbb{N}$ ．
Proof of Theoren 1 （assuiing Lerwa 3）．－Since E is a finite union of closed in－ tervals，

$$
E=U_{i=1}^{4}\left(x_{i}+\left(0, \delta_{i}\right)\right) \text { for sone } x_{1}, \ldots, x_{k} \text { and } \delta_{1}, \ldots, \delta_{k} .
$$

If $M \geqslant \mathbb{N}$ ；then

$$
\begin{align*}
& E+\left[0 ; M^{-1}\right\}=U_{i=1}^{k}\left(\left[X_{i},\left(x_{i}+1 / M\right)\right]+\left(0, \delta_{i}\right\}\right) \\
& \supset \cup_{i=1}^{k}\left(y_{i} M^{-1}+\left(0, \delta_{i}\right)\right) \text { for } y_{i}=\left(M x_{i}+1\right), i=1, \ldots, k \\
& \left.\partial U_{i=1}^{k}\left(y_{i} M^{-1}+〔 0, z_{i} M^{-1}\right)\right) \text { where } z_{i}=\left[M \delta_{i}\right], i=1, \ldots, k \\
& =\bigcup_{i=1}^{k}\left(y_{i} M^{-1}+M^{-1} I\left(z_{i}\right)+\left(0, M^{-1}\right\}\right) \\
& =\mathbb{N}^{-1} B+\left[0, \mathbb{M}^{-1}\right\rceil \ldots \tag{A}
\end{align*}
$$

where $B={ }_{i=1}^{k}\left(y_{i}+I\left(z_{i}\right)\right)$ ．
Now

$$
\begin{align*}
M^{-1} B+〔 0,3 / M 〕 & \left.=U_{i=1}^{k}\left(y_{i} M^{-1}+M^{-1}\left(0, z_{i}\right\rceil\right)+〔 0,2 / \mathbb{M}\right\rceil \\
& =U_{i=1}^{k}\left(\left[y_{i} M^{-1},\left(y_{i}+1\right) M^{-1}\right]+M^{-1}\left[0, z_{i}+1\right]\right) \\
& =U_{i=1}^{k}\left(x_{i}+1 / M+\left[0, o_{i}\right]\right) \\
& =E+1 / M \ldots \tag{B}
\end{align*}
$$

Now suppose $F \subset Z(\mathbb{M}),|F| \leqslant n$. Then there is, by lama 3 ; a d such that $M^{-1} F+d=B$. So

$$
\begin{align*}
\mathrm{B}+(0,2 / \mathrm{M}) & \supset \mathrm{M}^{-1} \mathrm{~F}+\mathrm{d}+(0,2 / \mathrm{N}] \\
& \supset \mathrm{M}^{-1} \mathrm{~F}+(\mathrm{d}, \mathrm{~d}+1 / \mathrm{M})+(0,1 / \mathrm{m}\} \\
& \supset \mathrm{M}^{-1} \mathrm{~F}+\mathrm{c} / \mathrm{N}+(0,1 / \mathrm{N}) \tag{c}
\end{align*}
$$

where $c=(u d+1)$. But by (B),

$$
\begin{aligned}
M^{-1} B+\{0,5 / M\} & =E+1 / M+(0,2 / M) \\
& =M^{-1}(F+c+1)+\{0,1 / M\rceil, b y(c)
\end{aligned}
$$

This is equivalent to

$$
M^{-1}(B+I(5))+(0,1 / M)=M^{-1}(F+c+1)+(0,1 / M)
$$

which implies that $F+c \subset B+I(5)-1$.

$$
\text { We take } \begin{aligned}
& A=B+I(5)-1(\bmod M) \cdot \text { Then } \\
&|(j) A| M^{-1}=n\left((j) M^{-1} A+\left(0, M^{-1}\right\}\right) \\
&=n\left((j)\left(M^{-1} B+M^{-1} I(5)\right)+\left[0, M^{-1}\right\}\right) \\
&<n\left((j)\left(E+\left\{0, M^{-1}\right)+\mathbb{M}^{-1} I(5)\right)\right) \\
&=n\left((j) E+M^{-1}(0,5 j)\right)<\varepsilon, \text { by Lemma 3. }
\end{aligned}
$$

Proof of Theorem 2. - We work in ${\underset{\sim}{T}}^{n}\left({\underset{\sim}{r}}^{n}\right.$ nodule 1), for convenience. Choose $\mathbb{N}(j, r, e / 2 j)$ to be the same as in Theorem 1. If $C \in b(N, r)$ then, from the definition

$$
C=\sum_{i=1}^{\infty} N^{-i} F_{i} \text { for some } F_{1}, F_{2}, \ldots \in I(\mathbb{N})^{n}
$$

Write $C_{i}=N^{-i}\left(F_{i}+N \cdot{\underset{Z}{n}}^{n}\right)+N^{-i}(0,1)^{n}$. Then $C=n_{i=1}^{\omega} C_{i}$. Also, since $\left|F_{i}\right| \leqslant r$,
$F_{i} \subset G_{i}^{(1)} \times \ldots \times G_{i}^{(n)}$ for sone $G_{i}^{(k)} \subset I(N)^{n},\left|G_{i}^{(k)}\right|<r, 1 \leqslant k \leqslant n$.
Applying Theorem 1 for each $G_{i}^{(k)}$, we have a $c\left(G_{i}^{(k)}\right) \in I(\mathbb{N})$ such that

$$
G_{i}^{(k)}+c\left(G_{i}^{(k)}\right)+N \underset{\sim}{Z}=A+N \underset{\sim}{Z} .
$$

So if $c_{i}=c_{i}\left(F_{i}\right)=\left(c\left(G_{i}^{(1)}\right), \ldots, c\left(G_{i}^{(n)}\right)\right)$,

$$
F_{i}+c_{i}+N{\underset{Z}{2}}^{n} \subset A^{n}+N{\underset{\sim}{2}}^{n}
$$

Let $d=\sum_{i=1}^{\infty} c_{i} N^{-i}$. Then

$$
\begin{aligned}
C_{i}+d & \left.=N^{-i}\left(F_{i}+c_{i}+N \cdot Z^{n}\right)+N^{-1} 〔 0,1\right\}^{n}+\sum_{\ell>i} c_{\ell} N^{-\ell} \\
& =N^{-i}\left(A^{n}+N \cdot Z^{n}\right)+N^{-i}(0,2\}^{n} \\
& =N^{-i}(A+\{0,1\}+N \cdot Z)^{n}+N^{-i}(0,1)
\end{aligned}
$$

So, if $B \equiv A+\{0,1\} \operatorname{nod} N, B \subset I(N)$, and $K=\left\{\sum_{i=1}^{\infty} x_{i} N^{-i} ; x_{i} \in B^{n}\right\}$, we have $C ; d \in K$. Since K is a closed perfect self-sinilar Cantor set, we need only show (b). But

$$
K=n_{i=1}^{\infty}\left(N^{-i}(B+N \cdot Z)^{n}+N^{-i}(0,1)^{n}\right)
$$

so

$$
\begin{aligned}
(j) K & =n_{i=1}^{\infty}\left(\mathbb{N}^{-i}((j) B+\mathbb{N} \cdot Z)^{n}+\mathbb{N}^{-i}(0, j\}^{n}\right) \\
& =n_{i=1}^{\infty}\left(\mathbb{N}^{-i}((j) B+I(j)+\mathbb{N} \cdot Z)^{n}+\mathbb{N}^{-i}(0,1\}^{n}\right) .
\end{aligned}
$$

Now

$$
(j) B+I(j) \equiv(j) A+I(2 j), \operatorname{rod} \mathbb{N}
$$

and

$$
(j) A+I(2 j)|\leqslant 2 j|(j) \mathbb{A} \mid<\varepsilon
$$

Proof of theoreu 3. - fgain we work in ${\underset{\sim}{T}}^{n}$. If $F \subset{\underset{\sim}{T}}^{n}$ is any countable set, let x_{1}, x_{2}, \ldots be an enumeration of F. In the notation of Wheoren 1, let $n_{i}=\mathbb{N}\left(i, i, i^{-1}\right), A_{i}=A\left(n_{i}\right)$ (so that $\left|(i) A_{i}\right| \leqslant i^{-1} n_{i}$) and let $M_{i}=n_{1} \times n_{2} \times \ldots \times n_{i}$.

Assuming that we have chosen $c_{k} \in I\left(H_{k}\right)^{n}, 0 \leqslant k \leqslant i-1$, we choose c_{i} as follows.
There is on $F_{i} \subset I\left(n_{i}\right)^{n},\left|F_{i}\right| \leqslant i$ such that

$$
M_{i-1}\left\{x_{1}, \ldots, x_{i}\right\}+{\underset{Z}{2}}^{n} \subset n_{i}^{-1} F_{i}+n_{i}^{-1}(0,1\}^{n}+{\underset{Z}{2}}^{n}
$$

(this is just a way of saying that we need at nost i intervals to contain i point:s).

As in the proof of Theoreal 2, we nay choose c_{i} so that

$$
F_{i}+c_{i}+n_{i} Z_{2}^{n} \subset A_{i}^{n}+n_{i} Z^{n}
$$

so
(1) $\left\{x_{1}, \ldots, x_{i}\right\}+c_{i} N_{i}^{-1}+M_{i-1}^{-1}{\underset{\sim}{n}}_{n}^{n}-M_{i}^{-1} A^{n}+M_{i}^{-1}(0,1)^{n}+H_{i-1}^{-1}{\underset{Z}{2}}_{n}^{n} \cdots$ For $k \in \mathbb{N}, E \subset \mathbb{T}^{n}, \mathrm{H}\left(\mathrm{k}^{-1} \mathrm{E}+\mathrm{k}^{-1}{\underset{\sim}{2}}_{\mathrm{Z}}^{\mathrm{n}}\right)=\mathrm{w}(\mathrm{E})$, so if

$$
c_{i}=M_{i}^{-1} A_{i}^{n}+n_{i-1}^{-1} \underset{\sim}{n}+M_{i}^{-1}(0,2)^{n},
$$

(i) $c_{i} H_{i-1}^{-1}\left((i)\left(n_{i}^{-1}\left(A_{i}^{n}+(0,2)^{n}\right)\right)+M_{i-1}^{-1}{\underset{Z}{ }}^{n}\right.$
and so

$$
\begin{align*}
n\left((i) C_{i}\right)=m\left((i) \left(n_{i}^{-1} A_{i}^{n}+n_{i}^{-1}(0,\right.\right. & \left.2)^{n}\right) \tag{2}\\
& \leqslant\left|(i) A_{i}^{n}\right| \times 2^{n} / n_{i}^{n}<2^{n} / i^{n} .
\end{align*}
$$

Let $c=\sum_{i=1}^{c o} c_{i} M_{i}^{-1}$, and suppose x_{i} is any nember of T. Then, if $k \geqslant i$,

$$
\begin{aligned}
x_{i}+c & =x_{i}+\sum_{j=1}^{k-1} c_{j} M_{j}^{-1}+\sum_{j=k}^{\omega} c_{j} H_{j}^{-1} \\
& c x_{i}+\sum_{j=k}^{\infty} c_{j} M_{j}^{-1}+M_{k-1}^{-1}{\underset{\sim}{2}}^{n} \\
& =x_{i}+c_{k} M_{k}^{-1}+H_{k-1}^{-1} \underset{\sim}{2}+\sum_{j=k+1}^{\infty} c_{j} M_{j}^{-1} \\
& \subset\left\{x_{1}, \ldots, x_{k}\right\}+c_{k} M_{k}^{-1}+M_{k-1}^{-1}{\underset{\sim}{2}}_{n}^{n}+M_{k}^{-1}[0,1\}^{n} \\
& =c_{k} \quad(\text { from }(1)) .
\end{aligned}
$$

So $x_{i}+c \in \cap_{k=i}^{\infty} \Xi_{k}$. If we put $K=\bigcup_{i=1}^{\infty} \cap_{k=i}^{\infty} G_{k}, K$ is F_{σ} and $F+c C K$.
de complete the proof by showing that, for any $k, \mathrm{w}(\mathrm{k}) \mathrm{k})=0$. For suppose $y \in(k) K$. Then $y=y_{1}+\ldots+y_{k}$ for sone $y_{1}, \ldots, y_{k} \in K$. Now for any $\mathbb{Z} \in \mathbb{K}$, there is a stallest $i=i(z)$ such that $z \in \bigcap_{j=i}^{\infty} C_{j}$. Let $m=\operatorname{rax}\left\{i\left(y_{1}\right), \cdots, i\left(y_{k}\right)\right\}$, then $y \in(k) \cap_{j=n}^{\infty} C_{i}$. So

$$
\begin{equation*}
(k) K \subset U_{\mathrm{ni}=1}^{\infty}(\mathrm{k}) \cap_{\mathrm{j}=\mathrm{a}}^{\infty} C_{j} . \tag{3}
\end{equation*}
$$

Now for any L , if ℓ is any number $\geqslant \mathrm{il}, \mathrm{k}$, then

$$
\left.m\left((k) \cap_{j=n}^{c \infty} C_{j}\right) \leqslant m(k) C_{2}\right)<m\left((i) C_{i}\right)<(2 / i)^{n} \text {, frow (2), }
$$

so $n\left((k) \eta_{j=n}^{\infty} C_{j}\right)=0$ since i was arbitrarily large.
Substituting in (3), we see that (k) K is the countable union of sets of measure zero and so is of neasure zero.

REPERETCTS

[1] BROWN (G.) and MORAN (W.). - Raikov systens and radicals in convolution neasure algebras, J. of London nath. Soc., Series 2, t. 28, 1983, p. 531-542.
[2] CASGELS (J. U. S.). - On a method of Marshall Hall, Mathenatika, London, t. 31, 1956, p. 109-110.
[3] COMNCLLY (D. M.) and WILLIARISON (J. H.). - Difference-covers that are not k suif covers II, Proc. Cambridge, phil. Soc., t. 75, 1974, p. 63-73.
[4] DAVEMPORT (H.). - A note on dionhantine approximation, Studios in matheratical analysis and related topics, 77-81. - Stanford, Stanford univeraity.Press, 1962.
[5] GELFAJD (I. M.), RitKov (D. A.) and 3HIJOV (G. B.). - Courutative norwed rings. - New Coric, Chelsea publishing Corpany, 1964.
[6] Finger (J. A.). - Difference covers which have suall k-surns for any k, Mi:thes atika, London, t : 20, 1973, p. 109-118.
[7] HiLL (Narschall, Jr.). - On the sum and product of coatinued fractions, Annals of Rath., Series 2, t. 48, 1947, p. 966-993.
[3] HLAMKA (J. L.). - Results on suris of continued fractions, frans. Acer. aeth. . Soc., t. 211, 1975, p. 123-134.
[9] JiCKSON (T. H.). - Asymetric sets of residues, llather atika, London, t. 19, 1972, р. 191-199.
[10] PICCiRT (i.). - Sur des ensenbles parfaits, Héroires de I'Université de Neuchâtel, Nouchätel, t. 16, Secrétariat de I'Université de Neuchâtel, 1942.
[11] SCIFIDT (U. W.). - On badly approxinatie numbers, Hather atika, London, t. 12, 1965, p. 10-20.

[^0]: (") John A. HAIGHP, Departwent of Hathenatics, University College, Gower Street,

