Effets de bord pour un tambour à bord fractal
Séminaire de théorie spectrale et géométrie, Tome 3 (1984-1985), Exposé no. 10, 14 p.
@article{TSG_1984-1985__3__A10_0,
     author = {Brossard, Jean},
     title = {Effets de bord pour un tambour \`a bord fractal},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     note = {talk:10},
     pages = {1--14},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {3},
     year = {1984-1985},
     mrnumber = {1046057},
     zbl = {0900.35270},
     language = {fr},
     url = {http://archive.numdam.org/item/TSG_1984-1985__3__A10_0/}
}
TY  - JOUR
AU  - Brossard, Jean
TI  - Effets de bord pour un tambour à bord fractal
JO  - Séminaire de théorie spectrale et géométrie
N1  - talk:10
PY  - 1984-1985
SP  - 1
EP  - 14
VL  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/item/TSG_1984-1985__3__A10_0/
LA  - fr
ID  - TSG_1984-1985__3__A10_0
ER  - 
%0 Journal Article
%A Brossard, Jean
%T Effets de bord pour un tambour à bord fractal
%J Séminaire de théorie spectrale et géométrie
%Z talk:10
%D 1984-1985
%P 1-14
%V 3
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/item/TSG_1984-1985__3__A10_0/
%G fr
%F TSG_1984-1985__3__A10_0
Brossard, Jean. Effets de bord pour un tambour à bord fractal. Séminaire de théorie spectrale et géométrie, Tome 3 (1984-1985), Exposé no. 10, 14 p. http://archive.numdam.org/item/TSG_1984-1985__3__A10_0/

[1] Azencott R. " Grandes déviations et applications". Ecole d'été de Probabilités de Saint Flour VIII ( 1978). Lecture note in Mathematics 774. Springer-Verlag. | MR | Zbl

[2] Berard P. ( 1983), Remarques sur la conjecture de Weyl. Compos. Math. 48, 35-53. | Numdam | MR | Zbl

[3] Berry M. ( 1979), " Distribution of modes in fractal resonators". Structural stability in Physics. Ed. W. Güttinger and H. Eikemeier. Springer Verlag, 51-53. | MR | Zbl

[4] Berry M. ( 1980), " Some geometrical aspects of wave motion : wavefront, dislocations, diffraction catastrophes, diffractals". Geometry of the Lapiace Operator. Proc. Symp. Pure Math, vol. 36, 13-38, Amer. Math. Soc. Providence. | MR | Zbl

[5] Brossard J. , Carmona R. ( 1985), " Can one hear the dimension of a fractal ?" Preprint. | MR | Zbl

[6] Gromes D. ( 1966), " Uber die asymptotische Verteilung der Eigenwerte des Laplace Operators für Gebiete auf der Kugeloberfläche". Math. Z. 94, 110-121. | MR | Zbl

[7] Ivrii V. ( 1980), " Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary". Funct. Anal. Appl. 14, 98-106. | MR | Zbl

[8] Kac M. ( 1966), " Can one hear the shape of a drum ?". Amer. Math. Monthly 73, 1-23. | MR | Zbl

[9] Kuznetsov ( 1966), " Asymptotic distribution of the eigenfrequencies of a plane membrane in the case when the variables can be separated". Diff. Equat. 2, 715-723. | Zbl

[10] Melrose R. ( 1980), " Weyl's conjecture for manifolds with concave boundary". Geometry of the Laplace Operator, Proc. Symp. Pure Math. vol. 36, 254-274, Amer. Math. Soc. Providence. | MR | Zbl

[11] Petkov V. ( 1985), " Propriétés génériques des rayons réfléchissants et applications aux problèmes spectraux". Exposé XII (26.2.85). Séminaire Bony-Sjöstrand-Meyer. Ecole Polytechnique. | Numdam | MR | Zbl

[12] Port S., and Stone C. ( 1978), " Brownien motion and classical potential theory". Academic Press, New-York. | MR | Zbl

[13] Simon B. ( 1979), Functional integration and quantum Physics. Academic Press, New York. | MR | Zbl