Semiclassical eigenstates in a multidimensional well
Séminaire de théorie spectrale et géométrie, Tome 11 (1992-1993), pp. 147-155.
@article{TSG_1992-1993__11__147_0,
     author = {Pankratova, T. F.},
     title = {Semiclassical eigenstates in a multidimensional well},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {147--155},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {11},
     year = {1992-1993},
     mrnumber = {1715949},
     zbl = {0937.35511},
     language = {en},
     url = {http://archive.numdam.org/item/TSG_1992-1993__11__147_0/}
}
TY  - JOUR
AU  - Pankratova, T. F.
TI  - Semiclassical eigenstates in a multidimensional well
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1992-1993
SP  - 147
EP  - 155
VL  - 11
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/item/TSG_1992-1993__11__147_0/
LA  - en
ID  - TSG_1992-1993__11__147_0
ER  - 
%0 Journal Article
%A Pankratova, T. F.
%T Semiclassical eigenstates in a multidimensional well
%J Séminaire de théorie spectrale et géométrie
%D 1992-1993
%P 147-155
%V 11
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/item/TSG_1992-1993__11__147_0/
%G en
%F TSG_1992-1993__11__147_0
Pankratova, T. F. Semiclassical eigenstates in a multidimensional well. Séminaire de théorie spectrale et géométrie, Tome 11 (1992-1993), pp. 147-155. http://archive.numdam.org/item/TSG_1992-1993__11__147_0/

1. M.V. Fedoryuk, Mat.Sb. 68(110) ( 1965), 81-110. (Russian)

2. A.G. Alenitsyn, Differentsial'nye Uravneniya 18 ( 1982), 1971-1975, English transl. in Differential Equations vol.18 ( 1982). (Russian) | MR | Zbl

3. B. Simon, Semiclassical analysis of low lying eigenvalues, II-Tunneling, Ann. Math. 120 ( 1984), 89-118. | MR | Zbl

4. G. Jona-Lasinio, F. Montinelli, E. Scoppola, New approach to the semiclassical limit of quantum mechanics, Comm. Math. Phys. 80 ( 1981), 223-254. | MR | Zbl

5. E.M. Harrel, Double wells, Comm. Math. Phys. 75 ( 1980), 337-408. | MR | Zbl

6. B. Helffer, J. Sjöstrand, Multiple welIs in the semiclassical limit, Math. Nachr. 124 ( 1985), 263-313. | MR | Zbl

7. E. Delabaere and H. Dillinger, Contribution a la resurgence quantique, These de doctorat de math., L'Université de Nice Sophia-Antipolis.

8. T. F. Pankratova, Quasimodes and splitting of eigenvalues, Soviet Math. Dokl. 29 ( 1984), 597-601. | MR | Zbl

9. Nguyên Hu'U Du'C and F. Pham, Germes de configurations legendriennes stables et fonctions d'Airy-Weber généralisées, Annales de l'institut Fourier, Grenoble 41 ( 1991), 905-936. | Numdam | MR | Zbl

10. T. F. Pankratova, Olver's form asymptotics for the localised solution of the Schrödinger equation, Intenational Conference on DIFFERENTIAL EQUATIONS (Equa∂i/∂tff 91) Vol.2, Barcelona, Spain, World Scientific (26-31 August 1991), 810-813. | MR | Zbl

11. T. F. Pankratova, The eigenstates of the Schrödinger equation in a multidimensional well. Analytic phases for an analytic potential, Prépublication n°337 Mars 1993, L'Université de Nice Sophia-Antipolis.

12. T. F. Pankratova, Semiclassical eigenstates for a multidimensional well, Preprint DYSCO-023 May 1993, University of Milan. International institute for the Interdisciplinary Study of Dynamical Systems, Como, Italy .

13. T. F. Pankratova, Semiclassical eigenstates for a 2-dimensional well. Second approximation for small quantum numbers., Matematics Preprint Series No. 136 June 1993, University of Barcelona.