@article{TSG_1996-1997__15__167_0, author = {Coulhon, Thierry}, title = {Heat kernels on non-compact riemannian manifolds : a partial survey}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {167--187}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {15}, year = {1996-1997}, zbl = {0903.58055}, language = {en}, url = {http://archive.numdam.org/item/TSG_1996-1997__15__167_0/} }
TY - JOUR AU - Coulhon, Thierry TI - Heat kernels on non-compact riemannian manifolds : a partial survey JO - Séminaire de théorie spectrale et géométrie PY - 1996-1997 SP - 167 EP - 187 VL - 15 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/item/TSG_1996-1997__15__167_0/ LA - en ID - TSG_1996-1997__15__167_0 ER -
%0 Journal Article %A Coulhon, Thierry %T Heat kernels on non-compact riemannian manifolds : a partial survey %J Séminaire de théorie spectrale et géométrie %D 1996-1997 %P 167-187 %V 15 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/item/TSG_1996-1997__15__167_0/ %G en %F TSG_1996-1997__15__167_0
Coulhon, Thierry. Heat kernels on non-compact riemannian manifolds : a partial survey. Séminaire de théorie spectrale et géométrie, Volume 15 (1996-1997), pp. 167-187. http://archive.numdam.org/item/TSG_1996-1997__15__167_0/
[1] Sobolev inequalities in disguise, Indiana Univ. Math. J., 44,4 ( 1995), 1033-1074. | Zbl
, , , -[2] Von Neumann spectra near the spectral gap, to appear in Bull Sc. Math.. | MR | Zbl
, , , -[3] Upper bounds for symmetric Markov transition fonctions, Ann. Inst.H.Poincaré, proba. et stat., suppl. au n° 2 ( 1987). 245-287. | Numdam | MR | Zbl
, , -[4] Inégalités isopérimétriques sur les variétés riemanniennes, thesis, University of Grenoble, 1994.
-[5] Inégalités isopérimétriques de Faber-Krahn et conséquences, in Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Bergen Collection SMF Séminaires et congrès, n° 1( 1994), 205-232. | MR | Zbl
-[6] Modified isoperimetric constants and large time heat diffusion in Riemannian manifolds, Duke Math. J., 64, 3 ( 1991), 473-499. | MR | Zbl
, -[7] Dimension à l'infini d'un semi-groupe analytique, Bull Sc. Math., 2ème série, 114, 3 ( 1990), 485-500. | MR | Zbl
-[8] Dimensions of continuous and discrete semigroups, in Semigroup theory and evolution equations, Clément, Mitidieri, De Pagter, éd., Marcel Dekker Lect. Notes in Pure and Appl. Math., vol.135 ( 1991), 93-99. | MR | Zbl
-[9] Itération de Moser et estimation gaussienne du noyau de la chaleur, Jour. Oper. Th., 29 ( 1993), 157-165. | MR | Zbl
-[10] Noyau de la chaleur et discrétisation d'une variété riemannienne, Israël J. Math., 80 ( 1992), 289-300. | MR | Zbl
-[11] Espaces de Lipschitzet inégalités de Poincaré, J. Funct. Anal, 136,1 ( 1996), 81-113. | MR | Zbl
-[12] Dimensions at infinity for Riemannian manifolds, Pot Anal, 4,4 ( 1995). 335-344. | MR | Zbl
-[13] Ultracontractivity and Nash type inequalities. J. funct. Anal., 141, 2 ( 1996), 510-539. | MR | Zbl
-[14] Analysis on infinite graphs with regular volume growth, to appear in Proceedings of the Cortona conference on random walks and discrete potential theory, 1997, Cambridge U.P. | MR | Zbl
-[15] Riesz transforms for 1 ≤ p ≤ 2, to appear in T.A.M.S.. | Zbl
, -[16] On-diagonal lower bounds for heat kernels and Markov chains, Duke Univ.Math. J., 89,1 ( 1997), 133-199. | MR | Zbl
, -[17] Random walks on graphs with regular volume growth, to appear in G.A.F.A. | MR | Zbl
- ,[18] Manifolds with big heat kernels, preprint.
- ,[19] Poincaré inequalities and Lp metrics, preprint, 1996.
, -[20] Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz: un conue-exemple, Arkiv für Mat., 32 ( 1994), 63-77. | MR | Zbl
, -[21] Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamer., 9, 2, ( 1993), 293-314. | MR | Zbl
, -[22] Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamer., 11,3 ( 1995), 687-726. | MR | Zbl
, -[23] Harnack inequality and hyperbolicity for the p-Laplacian with applications to Picard type theorems, preprint.
, -[24] Heat kernels and spectral theory,Cambridge University Press, 1989. | MR | Zbl
-[25] Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc, 2, 55 ( 1995). 105-125. | MR | Zbl
-[26] Sharp heat kernel bounds for some Laplace operators, Quart, J. Math.Oxford, Ser. 2, 40 ( 1989), 281-290,. | MR | Zbl
, -[27] A proof of the equivalence between Nash and Sobolev inequality, Bull. Sc. Math., 120 ( 1996), 405-411. | MR | Zbl
-[28] Singular integral operators with non-smooth kernels on irregular domains, preprint. | MR
,[29] The heat equation on non-compact Riemannian manifolds, in Ru ssi an: Matem. Sbornik, 182,1,55-87, 1991; English translation: Math. USSR Sb., 72,1 ( 1992), 47-77. | MR | Zbl
-[30] Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana, 10, 2 ( 1994). 395-452. | MR | Zbl
-[31] Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold, J. Funct. Anal., 127 ( 1995), 363-389. | MR | Zbl
-[32] Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom., 45 ( 1997), 33-52. | MR | Zbl
-[33] Heat kernel on a non-compact Riemannian manifold, in 1993 Summer research institute on stochastic analysis, ed. M. Pinsky et alia, Proceedings of Symposia in Pure Math., 57 ( 1994), 239-263. | MR | Zbl
-[34] Analytic and geometric background of recurrence and non-explosion of the brownian motion on Riemannian manifolds, preprint. | MR | Zbl
-[35] Heat kernel on manifolds with ends, preprint.
, -[36] Quasiconformal maps in metric spaces with controlled geometry, preprint, 1996. | MR | Zbl
, -[37] Analytic inequalities, and rough isometries between non-compact Riemannian manifolds, in Curvature and Topology of Riemannian Manifolds, Springer Lecture Notes 1201 ( 1986), 122-137. | MR | Zbl
-[38] On the parabolic kernel of the Schrödinger operator, Acta Math., 156 ( 1986), 153-201. | MR | Zbl
, -[39] Folner séquences on polycyclic groups, Rev. Mat. Iberoamer, 11 ( 1995), 675-685. | MR | Zbl
-[40] Amenable groups, isoperimetric profiles and random walks, preprint. | MR | Zbl
,[41] Duals of Hp spaces on Riemannian manifolds and on graphs, preprint.
-[42] H1-L1 boundedness for Riesz transforms on Riemannian manifolds and on graphs, preprint. | MR | Zbl
-[43] Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom. 36 ( 1992), 417-450. | MR | Zbl
-[44] A note on Poincaré, Sobolev, and Harnack inequalities, Duke Math. J., I.M.R.N., 2 ( 1992), 27-38. | MR | Zbl
-[45] On global Sobolev inequalities, Forum Mat., 6 ( 1994), 271-286. | MR | Zbl
-[46] Parabolic Harnack inequality for divergence form second order differential operators, Pot. Anal, 4,4 ( 1995), 429-467. | MR | Zbl
-[47] Sharp pointwise estimates on heat kernels, Quart.J. Math. Oxford, Ser. 2, 47 ( 1996), 371-382. | MR | Zbl
-[48] Geometry of Laplace-Beltrami operator on a complete Riemannian manifold, in Progress in differential geometry, Advances Studies in Pure Math., Math. Soc. Japan, Tokyo, 22 ( 1993), 347-406. | MR | Zbl
-[49] Une généralisation du théorème de Hardy-Littlewood-Sobolev pour les espaces de Dirichlet, C.R.A.S Paris, 299, I ( 1984), 651-654. | MR | Zbl
-[50] Isoperimetric inequalities and Markov chains, J. Funct. Anal, 63, 2 ( 1985), 215-239. | MR | Zbl
-[51] Hardy-Littlewood theory for semigroups, J. Funct. Anal., 63, 2 ( 1985), 240-260. | MR | Zbl
-[52] Random walks and Brownian motion on manifolds, Symposia Math., XXIX { 1987), 97-109. | MR | Zbl
-[53] Analysis on Lie groups, J. Funct. Anal, 76, 2 ( 1988), 346-410. | MR | Zbl
-[54] Small time Gaussian estimates of heat diffusion kernels. Part I: the semigroup technique, Bull Sc. Math., 113 ( 1989), 253-277. | MR | Zbl
-