Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés
Séminaire de théorie spectrale et géométrie, Volume 16  (1997-1998), p. 127-173
@article{TSG_1997-1998__16__127_0,
     author = {Biquard, Olivier and Gauduchon, Paul},
     title = {G\'eom\'etrie hyperk\"ahl\'erienne des espaces hermitiens sym\'etriques complexifi\'es},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {16},
     year = {1997-1998},
     pages = {127-173},
     zbl = {0943.53029},
     language = {fr},
     url = {http://www.numdam.org/item/TSG_1997-1998__16__127_0}
}
Biquard, Olivier; Gauduchon, Paul. Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés. Séminaire de théorie spectrale et géométrie, Volume 16 (1997-1998) , pp. 127-173. http://www.numdam.org/item/TSG_1997-1998__16__127_0/

[1] M.F. Atiyah, N.J. Hitchin and I.M Singer, Self-duality in four-dimensional Riemannian geometry, Proc, R. Soc. Lond. A 362 ( 1978), 425-461. | MR 506229 | Zbl 0389.53011

[2] A. Beauville, Variétés kählériennes dont la première classe de Chern est nulle, J. Diff. Geom. 18 ( 1990), 211-235. | MR 730926 | Zbl 0537.53056

[3] A.L. Besse, Einstein manifolds. Erg. der Math. 10, Springer-Verlag ( 1987). | MR 867684 | Zbl 0613.53001

[4] O. Biquaro, Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes, Math. Ann. 304 ( 1996), 253-276. | MR 1371766 | Zbl 0843.53027

[5] O. Biquabd, Twisteurs des orbites coadjointes et métriques hyper-pseudokählériennes, Bull. Soc. Math. France 126 ( 1998), 79-105. | Numdam | MR 1651382 | Zbl 0929.53024

[6] O. Biquard and P. Gauduchon, Hyperkähler metrics on cotangent bundles of hermitian symmetric spaces, in Geometry and Physics, J. Andersen, J. Dupont, H. Pedersen and A. Swann, editors, Lect. Notes PureAppl Math. Ser. 184, Marcel Dekker ( 1996), 287-298. | MR 1423175 | Zbl 0879.53051

[7] O. Biquard et P. Gauduchon, La métrique hyperkählérienne des orbites coadjointes de type symétrique d'un groupe de Lie complexe semi-simple, C.R. Acad. Sci. Paris, t. 323, série I ( 1996), 1259-1264. | MR 1428547 | Zbl 0866.58007

[8] D. Burns, Some examples of the twistor construction, dans Contributions to several complex variables, in honor of Wilhelm Stoll (eds. A. Howard and RM.Wong), Vieweg ( 1986), 51-67. | MR 859192 | Zbl 0596.53057

[9] E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Ec. Norm. Sup. 12 ( 1979), 269-294. | Numdam | MR 543218 | Zbl 0431.53056

[10] A. Dancer and R. Szöke, Symmetric spaces, adapted complex structures and hyperkähler structures, Q. J. Math., Oxford II, Series 48,189 ( 1997), 27-38. | MR 1439696 | Zbl 0879.32025

[11] S.K. Donaldson, Nahm's equations and the classification of monopoles, Comm. Math. Phys. 96 ( 1984), 387-407. | MR 769355 | Zbl 0603.58042

[12] T. Eguchi and A.J. Hanson, Asymptotically flat self-dual solutions to Euclidean gravity, Phys. Lett. 74B ( 1978), 249-251.

[13] G.W. Gibbons and S. Hawking, Gravitational multi-instantons, phys. Lett. 78B ( 1978), 430-432.

[14] R. Godement, Introduction à la théorie des groupes de Lie, Publications mathématiques de l'Université Paris 7,11-12 ( 1982). | Zbl 0533.22001

[15] V. Guillemin and S. Sternberg, Convexity Properties of the Moment Mapping, Inv. Math. 67 ( 1982), 491-513. | MR 664117 | Zbl 0503.58017

[16] N.J. Hitchin, Monopoles, minimal surfaces and Algebraic curves, Presses Universitaires de Montréal, 105 ( 1987). | MR 935967 | Zbl 0644.53059

[17] N.J. Hitchin, Hyperkähler manifolds, Séminaire Bourbaki, exposé 748 ( 1991). | Numdam | Zbl 0979.53051

[18] N.J. Hitchin, Integrables systems in Riemannian geometry | Zbl 0939.37039

[19] N.J. Hitchin, A. Karlhede, U. Lindström and M. Rocek, Hyperkähler metrics and supersymmetry, Comm. Math. Phys. 108 ( 1987), 535-589. | MR 877637 | Zbl 0612.53043

[20] D. Kaledin, Hyperkäher structures on total spaces of holomorphic cotangenl bundles, Preprint ( 1997), alg-geom/9710026.

[21] P. Kobak and A. Swann, Quaternionic geometry of a nilpotent variety, Math. Ann. 297 ( 1993), 747-764. | MR 1245417 | Zbl 0807.53040

[22] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann. 285 ( 1989), 249-263. | MR 1016093 | Zbl 0662.22008

[23] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, II, Interscience Tracts in Pure and Appl. Math. 15, II, Interscience Publishers, Wiley ( 1969) | Zbl 0175.48504

[24] S. Kobayashi and H. Wu, On holomorphic sections of certain Hermitian vector bundles, Math. Ann.189 ( 1970), 1-4. | MR 270392 | Zbl 0189.52201

[25] A.G. Kovalev, Nahm's equations and complex adjoint orbits, Quat. J. Math. Oxford 47 ( 1996), 41-58. | MR 1380949 | Zbl 0852.53033

[26] P.B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 ( 1990), 473-490. | MR 1072915 | Zbl 0725.58007

[27] P.B. Kronheimer, A hyperkähler structure on coadjoint orbits of a semi-simple Lie group, J. London Math. Soc. 42 ( 1990), 193-208. | MR 1083440 | Zbl 0721.22006

[28] S. Santa Cruz, Construction of hyperkähler metrics for complex adjoint orbits, Ph. D. thesis, Univ. of Warwick, Sept. 1995.

[29] A. Weil, Introduction à l'étude des variétés kählériennes, Publications de l'Institut de Mathématiques de l'Université de Nancago, VI, Hermann ( 1958). | MR 111056 | Zbl 0137.41103

[30] S.T. Yau, On Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. USA 74 ( 1977), 1798-1799. | MR 451180 | Zbl 0355.32028