The Dirac operator on collapsing S 1 -bundles
Séminaire de théorie spectrale et géométrie, Tome 16 (1997-1998), pp. 33-42.
@article{TSG_1997-1998__16__33_0,
     author = {Ammann, Bernd},
     title = {The {Dirac} operator on collapsing $S^1$-bundles},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {33--42},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {16},
     year = {1997-1998},
     zbl = {0935.58014},
     language = {en},
     url = {http://archive.numdam.org/item/TSG_1997-1998__16__33_0/}
}
TY  - JOUR
AU  - Ammann, Bernd
TI  - The Dirac operator on collapsing $S^1$-bundles
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1997-1998
SP  - 33
EP  - 42
VL  - 16
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/item/TSG_1997-1998__16__33_0/
LA  - en
ID  - TSG_1997-1998__16__33_0
ER  - 
%0 Journal Article
%A Ammann, Bernd
%T The Dirac operator on collapsing $S^1$-bundles
%J Séminaire de théorie spectrale et géométrie
%D 1997-1998
%P 33-42
%V 16
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/item/TSG_1997-1998__16__33_0/
%G en
%F TSG_1997-1998__16__33_0
Ammann, Bernd. The Dirac operator on collapsing $S^1$-bundles. Séminaire de théorie spectrale et géométrie, Tome 16 (1997-1998), pp. 33-42. http://archive.numdam.org/item/TSG_1997-1998__16__33_0/

[1] I. Agricola, B. Ammann, T. Friedrich, A comparison of the eigenvalues of the Dirac and Laplace operator on the two-dimensional torus. Preprint 1998. | Zbl

[2] B. Ammann, Spin-Strukturen und das Spektrum des Dirac-Operators, Dissertation, Universität Freiburg, ISBN 3-8265-4282-7, Shaker Verlag Aachen 1998.

[3] B. Ammann, C. Bär, The Dirac Operator on Nilmanifolds and Collapsing Circle Bundles, Ann. Global Anal. Geom. 16, 221-253 ( 1998). | MR | Zbl

[4] C. Bär, Metrics with harmonic spinors, GAFA 6, 899-942 ( 1996). | MR | Zbl

[5] L. Bérard Bergery, J.-P. Bourguignon, Riemannian submersions with totally geodesic fibers, Illinois J. Math. 26, 151-200 ( 1982). | MR | Zbl

[6] B. Colbois, G. Courtois, Convergence de variétés et convergence du spectre du Laplacien, Ann. Sc. Ec. Norm. Sup. 4e série 24, 507-518 ( 1991). | Numdam | MR | Zbl

[7] B. Colbois, J. Dodziuk, Riemannian metrics with large λ1, Proc. Amer. Math. Soc. 122 no. 3, 905-906 ( 1994). | MR | Zbl

[8] T. Friedrich, Zur Abhängigkeit des Dirac-Operators von der Spin-Strukturt, Colloq. Math. 48, 57-62 ( 1984). | MR | Zbl

[9] K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math. 87, 517-547 ( 1987). | MR | Zbl

[10] P.B. Gilkey, J.H. Park, Eigenvalues of the Laplacian and Riemannian submersions,Yokohama Math. J. 43 no. 1, 7-11 ( 1995). | MR | Zbl

[11] P.B. Gilkey, J.H. Park, Riemannian submersions which preserve the eigenforms of the Laplacian, III. J. Math. 40, 194-201 ( 1996). | MR | Zbl

[12] P.B. Gilkey, J.V. Leahy, J.H. Park, Eigenvalues of the form valued Laplacian for Riemannian submersions, Proc. Amer. Math. Soc. 126 no. 6,1845-1850 ( 1998). | MR | Zbl

[13] N. Hitchin, Harmonic spinors, Adv. Math. 14, 1-55 ( 1974). | MR | Zbl

[14] J.-Y. Wu, The topological spectrum of a smooth closed manifold, Ind. Univ. Math. J.44, no. 2, 511-534 ( 1995). | MR | Zbl