Construction de surfaces à courbure moyenne constante
Séminaire de théorie spectrale et géométrie, Volume 17  (1998-1999), p. 139-157
@article{TSG_1998-1999__17__139_0,
     author = {Pacard, Frank},
     title = {Construction de surfaces \`a courbure moyenne constante},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {17},
     year = {1998-1999},
     pages = {139-157},
     zbl = {1100.53500},
     mrnumber = {1752703},
     language = {fr},
     url = {http://www.numdam.org/item/TSG_1998-1999__17__139_0}
}
Pacard, Frank. Construction de surfaces à courbure moyenne constante. Séminaire de théorie spectrale et géométrie, Volume 17 (1998-1999) , pp. 139-157. http://www.numdam.org/item/TSG_1998-1999__17__139_0/

[1] C. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante, J. de Mathématiques, 6(1841) 309-320.

[2] J. Eells, On the surfaces of Delaunay and their Gauss maps. Proc. IV int. Colloq. Differential geometry, Santiago de Compostela 1978, 97-116 ( 1979). | MR 569313 | Zbl 0433.53004

[3] K. Grosse-Brauckmann, New surfaces of constant mean curvature, Math. Z. 214 ( 1993) 527-565. | MR 1248112 | Zbl 0806.53005

[4] K. Grosse-Brauckmann, R. Kusner et J. Sullivan, Constant mean curvature surfaces with three ends. To appear. | MR 1806797 | Zbl 0980.53011

[5] N. Kapouleas, Complete constant mean cuvature surfacesin Euclidean three space, Ann. of Math. (2) 131 ( 1990), 239-330. | MR 1043269 | Zbl 0699.53007

[6] N. Korevaar, R. Kusner et B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. of Diff. Geometry, 30 ( 1989) 465-503. | MR 1010168 | Zbl 0726.53007

[7] R. Kusner, R. Mazzeo et D. Pollack, The moduli space of complete embedded constant mean curvature surfaces, Geom. Funct. Anal. 6 ( 1996) 120-137. | MR 1371233 | Zbl 0966.58005

[8] R. Mazzeo et F. Pacard, Constant mean curvature surfaces with Delaunay ends. On peut trouver le fichier ps à l'adresse suivante http://xxx.lanl.gov/ps/math.DG/9807039 | Zbl 1005.53006

[9] R. Mazzeo, F. Pacard et D. Pollack, Connected sums of constant mean curvature surfaces in Euclidean 3 space. On peut trouver le fichier ps à l'adresse suivante http://xxx.lanl.gov/ps/math.DG/9905077 | Zbl 0972.53010

[10] R. Mazzeo, D. Pollack et K. Uhlenbeck, Connected sum constructions for constant scalar curvature metries, Top. Methods Nonlin. Anal. 6 No. 2, ( 1995), 207-233. | MR 1399537 | Zbl 0866.58069

[11] J. Perez et A. Ros, The space of properly embedded minimal surfaces with finite total curvature, Indiana Uni. Math. J. 45 ( 1996) 177-204. | MR 1406689 | Zbl 0864.53008

[12] R. Schoen , The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Comm. Pure and Appl. Math. XLI ( 1988), 317-392. | MR 929283 | Zbl 0674.35027

[13] H. Wente, Complete immersions of constant mean curvature, Proc. Sympos. Pure Math. 54 Amer. Math. Soc. ( 1993). | MR 1216602 | Zbl 0967.53506