Fonctions harmoniques sur les variétés
Séminaire de théorie spectrale et géométrie, Tome 17 (1998-1999), pp. 47-68.
@article{TSG_1998-1999__17__47_0,
     author = {Aubry, Erwann},
     title = {Fonctions harmoniques sur les vari\'et\'es},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {47--68},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {17},
     year = {1998-1999},
     mrnumber = {1752696},
     zbl = {0988.53012},
     language = {fr},
     url = {http://archive.numdam.org/item/TSG_1998-1999__17__47_0/}
}
TY  - JOUR
AU  - Aubry, Erwann
TI  - Fonctions harmoniques sur les variétés
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1998-1999
SP  - 47
EP  - 68
VL  - 17
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/item/TSG_1998-1999__17__47_0/
LA  - fr
ID  - TSG_1998-1999__17__47_0
ER  - 
%0 Journal Article
%A Aubry, Erwann
%T Fonctions harmoniques sur les variétés
%J Séminaire de théorie spectrale et géométrie
%D 1998-1999
%P 47-68
%V 17
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/item/TSG_1998-1999__17__47_0/
%G fr
%F TSG_1998-1999__17__47_0
Aubry, Erwann. Fonctions harmoniques sur les variétés. Séminaire de théorie spectrale et géométrie, Tome 17 (1998-1999), pp. 47-68. http://archive.numdam.org/item/TSG_1998-1999__17__47_0/

[1] J. Cheeger, T. Colding, W. Minicozzi, Linear growth harmonie fonctions on complete manifolds of non-negative Ricci curvature, Geom. Func. Anal. 5 ( 1995), 948-954. | MR | Zbl

[2] J. Cheeger, D. Gromoll, The splitting theorem for manifolds of non-negative Ricci curvature, J. Diff. Geom. 6 ( 1971), 119-128. | MR | Zbl

[3] J. Cheeger, D. Gromoll, On the structure of complete manifolds of non-negative curvature, Ann. Math. 92 ( 1972), 413-443. | MR | Zbl

[4] S.Y. Cheng, Liouville theorem for harmonic maps, Geometry of the Laplace operator, Proc. Symp. Pure Math., vol. 36, AMS ( 1980), 147-151. | MR | Zbl

[5] S.Y. Cheng, S.T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 ( 1975), 333-354. | MR | Zbl

[6] T. Colding, W. Minicozzi, Harmonic functions with polynomialgrowth, J. Diff. Geom. 46, n. 1 ( 1997). | MR | Zbl

[7] T. Colding, W. Minicozzi, Harmonic functions on manifolds, preprint. | MR | Zbl

[8] T. Colding, W. Minicozzi, Weyl type bounds for harmonic functions, Invent. Math. 131 ( 1998), 257-298. | MR | Zbl

[9] T. Colding, W. Minicozzi Liouville theorems for harmonic sections and applications on manifoldst, preprint. | MR

[10] S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Universitext, Springer-Verlag, 1993. | Zbl

[11] E. Hebey Introduction à l'analyse non linéaire sur les variétés, Fondation, Diderot éditeur, 1997. | Zbl

[12] P. Li, polynomial growth harmonic sections, Math. Research Letters 4 ( 1997), 35-41. | MR

[13] P. Li, Curvature and function theory on riemannian manifolds, preprint. | MR

[14] P. Li, L.F. Tam, Positive harmonic functions on complete manifolds with non-negative Ricci curvature outside a compact set, Ann. Math. 125 ( 1987), 171-207. | MR | Zbl

[15] P. Li, L.F. Tam, Linear growth harmonic functions on a complete manifold, J. Diff. Geom. 29 ( 1989), 421-425. | MR | Zbl

[16] P. Li, L.F. Tam, Complete surface with finite total curvature, J. Diff. Geom. 33 ( 1991), 139-168. | MR | Zbl

[17] M. Schoen, S-T. Yau, Conference Proc. and Lectures Notes in Geometry and topology Vol.I et II, International Press. | Zbl