Sur l'homologie et le spectre des variétés hyperboliques
Séminaire de théorie spectrale et géométrie, Tome 18 (1999-2000), pp. 17-26.
@article{TSG_1999-2000__18__17_0,
     author = {Bergeron, Nicolas},
     title = {Sur l'homologie et le spectre des vari\'et\'es hyperboliques},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {17--26},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {18},
     year = {1999-2000},
     mrnumber = {1812207},
     zbl = {0980.58022},
     language = {fr},
     url = {http://archive.numdam.org/item/TSG_1999-2000__18__17_0/}
}
TY  - JOUR
AU  - Bergeron, Nicolas
TI  - Sur l'homologie et le spectre des variétés hyperboliques
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1999-2000
SP  - 17
EP  - 26
VL  - 18
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/item/TSG_1999-2000__18__17_0/
LA  - fr
ID  - TSG_1999-2000__18__17_0
ER  - 
%0 Journal Article
%A Bergeron, Nicolas
%T Sur l'homologie et le spectre des variétés hyperboliques
%J Séminaire de théorie spectrale et géométrie
%D 1999-2000
%P 17-26
%V 18
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/item/TSG_1999-2000__18__17_0/
%G fr
%F TSG_1999-2000__18__17_0
Bergeron, Nicolas. Sur l'homologie et le spectre des variétés hyperboliques. Séminaire de théorie spectrale et géométrie, Tome 18 (1999-2000), pp. 17-26. http://archive.numdam.org/item/TSG_1999-2000__18__17_0/

[1] I. R. Aitchison and J. H. Rubinstein, Combinatorial cubings, cusps, and the dodecahedral knots, Topology '90 (Columbus, OH, 1990), 17-26, Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992. | MR | Zbl

[2] I. R. Aitchison and J. H. Rubinstein, Geodesic surfaces in knot complements, Experiment Math. 6 ( 1997), n° 2,137-150. | MR | Zbl

[3] M. D. Baker, The virtual ℤ-representability of certain 3-manifold groups, Proc. Amer. Math. Soc. 103 ( 1988), n° 3, 996-998. | MR | Zbl

[4] N. Bergeron, Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques, à paraître dans L'Enseignement Mathématique. | Zbl

[5] P. Buser, Geometry and spectra of compact Riemann surfaces, Birkhäuser ( 1992). | MR | Zbl

[6] A. Borei, Compact Clifford-Klein forms of symmetric spaces, Topology 2 ( 1963), 111-122. | MR | Zbl

[7] H. S. M. Coxeter, Regular honeycombs in hyperbolic space, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, pp. 155-169. Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co., Amsterdam, 1956. | MR | Zbl

[8] M. Gromov and I. Piateski-Shapiro, Non-arithmetic groups in Lobachevsky spaces, Publ. Math. I. H. E. S., pp. 93-103 ( 1988). | Numdam | Zbl

[9] A. Hatcher, Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc. (2), 27 ( 1983), 345-355. | MR | Zbl

[10] H. Hilden, M. Lozano and J. Montesinos, On knots that are universal, Topology 24 ( 1985), 499-504. | MR | Zbl

[11] S. Kojima and D. D. Long, Virtual Betti numbers of some hyperbolic 3-manifolds, A fête of topology, 417-437, Academic Press, Boston, MA, ( 1988). | MR | Zbl

[12] D. D. Long, Immersions and embeddings of totally geodesic surfaces, Buil. London Math. Soc. 19, pp. 481-484( 1987). | MR | Zbl

[13] A. Lubotzky, Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1, pp. 71-82 ( 1996). | MR | Zbl

[14] J. G. Ratcliffe, Fondations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer-Verlag ( 1994). | MR | Zbl

[15] A. W. Reid, Totally geodesic surfaces in hyperbolic 3-manifotds, Proc. Edimburgh Math. Soc. ( 1991) 34, 77-88. | MR | Zbl

[16] A. W. Reid, Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds, Duke Math. J. ( 1992) 65, 215-228. | MR | Zbl

[17] P. Scott, Subgroups of surface groups are aimost geometric, J. London Math. Soc. 17 (2) ( 1978) 555-565. | MR | Zbl

[18] A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, in: Contributions to Function Theory, edited by K. Chandrasekharan, Tata Inst. of Fund. Research, Bombay ( 1960), 147-164. | MR | Zbl

[19] R. J. Spatzier, On isospectral locally symmetric spaces and a theorem of von Neumann, Duke Math. J. ( 1989) 59, 289-294; Correction, Duke Math. J. ( 1990) 60, 561. | MR | Zbl

[20] M.-F. Vignéras, Variétés Riemanniennes isospectrales et non isométriques, Ann. of Math. ( 1980) 112, 21-32. | MR | Zbl

[21] E. B. Vinberg, Geometry II, Encyclopedia of Mathematical Sciences, 29, Springer-Verlag ( 1993). | MR | Zbl