@article{TSG_2000-2001__19__123_0, author = {Rumin, Michel}, title = {Around heat decay on forms and relations of nilpotent {Lie} groups}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {123--164}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {19}, year = {2000-2001}, mrnumber = {1909080}, zbl = {1035.58021}, language = {en}, url = {http://archive.numdam.org/item/TSG_2000-2001__19__123_0/} }
TY - JOUR AU - Rumin, Michel TI - Around heat decay on forms and relations of nilpotent Lie groups JO - Séminaire de théorie spectrale et géométrie PY - 2000-2001 SP - 123 EP - 164 VL - 19 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/item/TSG_2000-2001__19__123_0/ LA - en ID - TSG_2000-2001__19__123_0 ER -
%0 Journal Article %A Rumin, Michel %T Around heat decay on forms and relations of nilpotent Lie groups %J Séminaire de théorie spectrale et géométrie %D 2000-2001 %P 123-164 %V 19 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/item/TSG_2000-2001__19__123_0/ %G en %F TSG_2000-2001__19__123_0
Rumin, Michel. Around heat decay on forms and relations of nilpotent Lie groups. Séminaire de théorie spectrale et géométrie, Tome 19 (2000-2001), pp. 123-164. http://archive.numdam.org/item/TSG_2000-2001__19__123_0/
[1]Elliptic operators, discrete groups and von Neumann algebras. Astérisque, 32-33 ( 1976), 43-72. | MR | Zbl
.[2] The fundamental group and the spectrum of the Laplacian. Comment. Math. Helu, 56 ( 1981), 581-598. | MR | Zbl
.[3] Carlson and Domingo Toledo. Quadratic présentations and nilpotent Kahler groups. J. Geom. Anal..5(3):359-377, 1995. | MR | Zbl
[4] The n-cohomology of representations with an infinitesimal character. Compositio Math.,31 (2):219-227, 1975. | Numdam | MR | Zbl
and .[5] Examples of n-step nilpotent 1-formal 1-minimal models. C. R.Acad. Sci. Paris Sér. I Math., 321(2):223-228, 1995. | MR | Zbl
.[6] Pseudodifferential operators on groups with dilations. DukeMath. J., 68(l):31-65, 1992. | Zbl
, , , and .[7] H-type groups and Iwasawa decompositions. Adv. Math., 87(1):1-41, 1991. | Zbl
, , and ,[8] Representations of nilpotent Lie groups and their applications. Part I. Cambridge University Press, Cambridge, 1990. | Zbl
and .[9] On the cohomology of nilpotent Lie algebras. Bull. Soc. Math.France, 116(1):3-14, 1988. | Numdam | Zbl
and .[10] Cohomologie des algèbres de Lie nilpotentes. Acta Sci. Math., 16:246-250. 1955. | Zbl
.[11] Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat., 13(2): 161-207, 1975. | MR | Zbl
.[12] Rational homotopy theory and differential forms. Birkhäuser Boston, Mass., 1981. | MR | Zbl
and ,[13] Carnot-Carathéodory spaces seen from within. In A. Bellaïche and J.-J. Risler, editors, Sub-Riemannian Geometry, volume 144 of Progress in Math, pages 79-323. Birkhäuser 1996. | MR | Zbl
.[14] Von Neumann spectra near zero. Geometrie and Functional Analysis, 1 (4) ( 1991), 375-404. | EuDML | MR | Zbl
and .[15] Near-cohomology of Hilbert complexes and topology of non-simply connected manifolds. In Méthodes semi-classiques. Astérisque, 210 ( 1992), 283-294. | Numdam | MR | Zbl
and .[16] Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué. Comm. Partial Differential Equations,4 (8):899-958, 1979. | MR | Zbl
and .[17] Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Birkhäuser Boston Inc., Boston, MA, 1985. | MR | Zbl
and .[18] Fibre bundies. Springer-Verlag, New York, third edition, 1994. | MR | Zbl
.[19] On the geometry of groups of Heisenberg type. Bull. London Math. Soc, 15(l):35-42, 1983. | MR | Zbl
.[20] Heat kernels on covering spaces and topological invariants. J. Differential Geom., 35(2):471-510, 1992. | MR | Zbl
.[21] Introduction to L2 Betti numbers. In Riemannian geometry (Waterloo, ON, 1993), pages 53-86. Amer. Math. Soc, Providence, RI, 1996. | MR | Zbl
.[22] Hypoelliptic differential operators and nilpotent groups. Acta Malh., 137(3-4) :247-320, 1976. | MR | Zbl
and .[23] Methods of Modem Mathematical Physics, volumes 1and 2 : Functional Analysis. Academie Press, 1972. | Zbl
and .[24] Un complexe de formes différentielles sur les variétés de contact. C. R.Acad. Sci. ParisSér. I Math., 310(6):401-404, 1990. | MR | Zbl
.[25] Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups. C. R. Acad. Sci. Paris Sér. I Math., 329(11):985-990, 1999. | MR | Zbl
.[26] Riemannian geometry and holonomy groups. Longman Scientific & Technical, Harlow, 1989. | MR | Zbl
.[27] Analysis and geometry on groups. Cambridge University Press, Cambridge, 1992. | MR
, , and .