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Séminaire de théorie spectrale et géométrie
GRENOBLE
Volume 19 (2001) 165-177

REMARKS ON SPHERE PACKINGS, CLUSTERS AND
HALES FERGUSON THEOREM

Jean-Louis VERGER-GAUGRY

1. Introduction

In a short note to one of his friends in 1610 about the structure and the shape of
snowflakes crystals (see the remarkable articles of Haies [Hl and Oesterlé [O] for histo-
rical details), Strena seu de nive sexangula, Johannes Kepler claims the following resuit
known as Kepler's conjecture, which is considered today as Haies Ferguson's theorem,
since 1998.

THEOREM 1.1 ( Haies - Ferguson ). — Nopackingofidenticalsphères in threedimen-
sions has density greater than theface-centred cubic packing, namely ^ = = 0.74048

The Kepler conjecture was an old unsolved problem in discrete geometry.

The face-centred cubic packing is known as the canonballs packing or the pyramid
stacking of oranges and is the densest lattice packing of sphères, of density ni ^/ÏQ. The
fundamental question asked by the conjecture was to understand how the density could
or not exceed the so-called Kepler bound n/y/TE in the case of aperiodic packings of
sphères with respect to lattice sphère packings of Rw. Haies, in a multistep programm
abundantly described on the web [H3] [H4], whose one step was Ferguson's thesis [F],
announced the proof of the conjecture in 1998 after more than seven years of investiga-
tions. In the meantime an incomplete proof by Hsiang |Hs] was published in 1993 and
was a source of controversy [H2] [O].

The seminar given by the author was intended to sketch the main ingrédients of the
proof of Haies as presented in [H].

In this present short note, we will just recall a few questions which seem important
about densities of aperiodic and lattice sphère packings in DR". Comparison will be made
with the ingrédients developed by Rogers, Haies, Ferguson, Hsiang and others.
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The genera! context in which we will proceed is that of the set of uniformly discrete
sets, suitably topologized, leaving aside spaces of lattices. We will recall the Minkowski-
Hermite approach for lattice sphère packings (in section 4) which is generalized by the
theory of systoles [B] and generalized systoles [Al. The integer n will be assumed to be
greater than 2 in the sequel.

2. Uniformly discrete sets, Delone sets and densities

First, in order to make more accurate the statements and fix the notations, we will
recall some définitions about densities and Systems of sphères of IR", n > 1.

Let t > 0 be a realnumber.By définition, wewill say that a discrete set A of IR" is
an uniformly discrete set of constant f > 0 if ||x - yII ^ t as soon as x * y with
x,y G A. Examples of uniformly discrete sets of constant t are the empty set 0 , point
sets reduced to one point {jc},with JC G IR"; let us cite also any Z-module Z*,l ^
k ^ n, built on the canonical basis of IR", in particular Z", as uniformly discrete set of
constant 1. We wil! say that a discrete point set of IR" is a uniformly discrete set if there
exists t > 0 such that it is a uniformly discrete set of constant t. By définition a finite
uniformly discrete set of IR" will be called a cluster.

Take r > 0 and assume ^ := (a , ) ï e / is a finite or infinité discrete collection of
points of IR" which is a uniformly discrete set of IR" of constant 2r. The set <& maybe
empty. Dénote by B = B(0,r) the n-dim en si on al closed bail of 05" of volume vn(r) =
nn/2 r« / F( w±2 ) c e n t r e d a t t h e origin and of radius r. By définition, a System of (identical)
sphères over *jd- of radius r is a packing of translates of B where the translation vectors
belong to ^ . We will dénote it by

&(<*£) := {at + B \ i G ƒ}

We will speak of a system of sphères of radius r without mentioning the dependency
to ^ and will mention it when necessary in the sequel. Two different balls (so-called
sphères in literature by tradition) in the packing ffi{jé-) may have at most one point in
common on the boundary or are of empty intersection.

There is an obvious one-to-one correspondence between system of sphères of ra-
dius r and uniformly discrete sets of constant 2r of R". Indeed, to obtain a packing
of sphères from anyarbitrary uniformly discrete set oé of constant r, we chose the real
number f > O as large as possible such that the balls {a/ + J?(O,r) | i G ƒ} havepair-
wise disjoint interiors, that is for t = r. Conversely, any system of sphères clearly defines
a uniformly discrete set which is constituted by the collection of the centres of sphères
and its constant is twice the common radius of the sphères.

In chapter 1 of Rogers [R], itisshown thatadensitycanbeattributedto the system
of sphères &3(<J&).Let XQ be an arbitrary element of IR".Letuscall 0(03(^4)) e [0,1] its
density, computed at Xo, defined by

= limsup volf \\J(ai + B)) r)B(xo,R)\ /vo\(B(xo,R))\ € [0,1] (1)
*-+o° L Wiel I I J
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The theorem 1.7 in Rogers [R] proves that this value is independent of the point JCO.
Therefore we wil] speak of the density of the sphère packing ffi(*jé) without mentioning
JCO and will take, as it is usual, xo = 0 for simplicity's sake. It is clear that if ^ is the empty
setthen <5(â?(0)) = 0; similarly, if j& is a finite uniformly discrete set of arbitrarystrictly
positive constant, we have ö(&8(.j&)) = 0. Even though dé is an infinité uniformly dis-
crete set of arbitrary strictly positive constant, the notion of density becomes interesting,
i.e. non zero, when J& has enough points say at infinity in a sense we will précise below. It
is the case of lattices which were extensively studied (Conway and Sloane [CS], Martinet
|M]) and remains a wonderful subject.

By the theorem 1.7 in Rogers [R], we know that any non-singular affine transforma-
tion of R" leaves invariant the density of a sphère packing of IR". Therefore, we will
restrict ourselves in the following to the study of densest Systems of sphères of R" which
arise from uniformly discrete sets of R" of constant 1 (say 1 for simplicity's sake). It
amounts to make a dilation of IR" to have r = 1/2. We will dénote by <9l& the set of
uniformly discrete sets of constant 1 and by <2^-sets its éléments. Take R > 0 a real
number. We will dénote by XR the subset of <%l@) constituted by the discrete sets A of
R" suchthat

A is a

and obeys the following condition of relative denseness:

V z e f 3A e A suchthat A e B(z,R).

The éléments of XR are said to be Delone sets of constants (1,R). In gênerai, if a discrete
set A belongs to <%é@ and is such that there exists a real number R > 0 such that
A e XR, then we will say that A is a Delone set (ensemble de Delaunay in french),
without mentioning necessarily the constants (l,i?).

A Delone set of constants (\,R) does not contain say any deep hole of diameter
greaterthan 2R by définition. A feature common to all Delone sets of R" is that the R-
span of an arbitrary Delone set is always Rw itself. Lattices which are uniformly discrete
sets of R" of constant 1 are Delone sets, for instance In. The empty set is not a Delone
set. For all Rf ^ R > 0, then XR c XR>. For all Delone set A of R", let us dénote by

R(A) :=inf{J?|A e XR]

the covering radius of A, namely the smallest reaJ number R such that A e XR) ob-
viously R(A) > 0. We have

A e XR{A) with A é XR>

for all Rr > 0 strictly less than i?(A).Let J?min := infA Deione fl(A) the minimal covering
radius over all Delone sets of Rw. If R' is such that 0 < Jf?' < i?min then obviously
XW = 0 .

The terminology about uniformly discrete sets and Delone sets did not appear in
Rogers [R] but this author has studied sphère packings over Delone sets (see Chapter 7
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in [R]) in the scope of defining nonzero local densities and bounded Voronoi polyhedra.
This concept of Delone set of R" was also implicitely used by Haies since one of his
first opération on a given sphère packing, in the search for densest sphère packings, is
saturation [H3]. Saturation means that each time a sphère packing has a sufficiently large
hole, a sphère may be put inside; and so on, up till it becomes impossible to do it. Let us
précise this notion.

PROPOSITION 2.1. — Packings ofidentical sphères of maximal density in W1 arise
from Delone sets of constants (2t,2t) where t > 0 is the common radius of the sphères.
In other ternis

sup 5{œ{j&)) = sup

Proof — Assume t = 1/2 for simplicity's sake and that je e W® is an arbi-
trary ^®-set in Rw. If there exists z e R" such that \\z - A|| ^ 1 for ail A e ^ ,
then we put a bail B of radius 1/2 at z. We repeat this adding process indefinitely
up till there is no more points of Rn which satisfy this property. This adding process of
balls créâtes a séquence of uniformly discrete sets from which we extract a subsequence
which is converging in the rf-topology (see theorem 2.2 below) and for which the limit is
a Delone set. This adding process of balls favours an increase of the density of ^ along
this subsequence to give rise to a Delone set of constant (1,1) of higher density (not
necessarily strictly) made of the whole collection of old and new sphère centres. This
adding process does not necessarily stop after a finite number of steps. If a QM-set can-
not be added a bail by this adding process, then it is already necessarily a Delone set of
constants (1,1). Note that this adding process can eventually be used for some Delone
sets *rf of constants (1,1) to densify them: if there is a point z e IR" such that the
closest A G J& is at distance 1 from z, we put a bail B at z. Therefore sphère pa-
ckings of maximal density arise from Delone sets of constants (1,1). Conversely, itis not
known whether an arbitrary Delone set of constants (1,1) gives rise to a sphère packing
of density equalto

sup

Possibly not since presumably the density function is not constant on

Let us remark that if we remove a finite number of points from a 3ï^-set, its density
will not change. The previous proposition means that all the information about densest
sphère packings is contained in X\.

Muraz and Verger-Gaugry [MVG] have shown that a certain uniform topology can be
put on Q£&. Moreover, th ey have constructed a distance d on ^/0 for which {<%féiï,d) is
a metric space and proved the following resuit.

THEOREM 2.2.— The space (<Miï,d) is a compact metric space. For ail R ^ \,the
subset XR C W@ of Delone sets of constants (1,J?) is compact in the d-topology.
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Since the proof of the theorem in [MVG] can obviously be extended to any R ^
Rm\n, wededuce that XR is compact for all R > J?mjn and that the space \JR>O^R of
all Delone sets of IR" is locally compact in the d-topology.

We now pull back the rf-topologyon <9l& to the set of Systems of sphères of radius
1/2, denoted by SS, without mentioning 'n' the dimension of the ambiant space Kn. We
define, keeping the same notation 'd'for the distance,

d(m(<jé)>œ{j$)) := d{jé-rj4') for all ^ ^ ' e <&B>

COROLLARY 2.3. — The set of Systems of sphères of radius 1/2 endowed with the d-
topology, (SS, d), is a compact space.

Let us recall the classical définition of the packing constant of IR":

5+ := sup

Obviously, we have:

5+ = sup 5(œ(jé-)) = sup

where R ^ 1 is an arbitrary real number. Let us define in a similar way

5" := inf

(QO) For all integer n ^ 1, does there exist Systems of sphères BS of DRW of maximal
density i.e. such that their density reaches the packing constant

6(SB) = 5^ ?

Does there exists a topology on (%tS) such that 5 iscontinuous?

If the answer is yes, we will say that a system of sphères (or a sphère packing) is
extreme if it corresponds to a local maximum of the density function S. Some questions
can now be formulated as far as we are concerned with densest sphère packings of R".

(Ql) How many extreme Systems of sphères does there exist (up to translation, rotation
and symmetry) and how can they be characterized?

In particular

(Q2) Which are among them the densest ones, and for which value of 5^ ?

If 5 cannot be made continuous for any non trivial topology on $10), we cannot
speak of extreme lattices, but we will only consider those sphère packings of density close
to 5^, without knowing whether this value is reached by a System of sphères.

We have only a very partial answer to question (QO) by the following proposition
(2.5).
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First, let us mention a useful lemma correlating the proximity of <:&®-sets in the
d-topology and their respective points in K".

LEMMA 2.4. — Let A,A' be two non-empty fyfé&sets.Let l = dist(0,A) < +<» dénote
the dis tance from theorigin to A in theEuclidean norm. Let e bean arbitraryrealnumber
in the interval ]0tj±2ï[ and assume that

rf(A,A') < e

Thenforall À e A such that

• Al < ^

(i) there exists an unique A' e A' such that ||A - A'II < 1/2, (ii) thispairing (A,A') sa-
tisfies the inequality:

Proof. — See section 2 in [MVG]. •

Let us define the class

«A G

vol ((\Ji€l(aj

The following proposition is a very partial counterpart of the Minkowski-Hermite
approach for lattices (recalled in section 4) and shows the usefulness of the rf-topology
to study aperiodic Systems of sphères of K" as far as the class <& isknown.

PROPOSITION 2 .5.— The restriction of the density map S to the class <g is conti-
nuous in the d-topology.

Proof. — Let e > 0. Assume that «*£ = {ai)i€l and <j&' = (fljj/gz are two éléments
of qg such that

6 ( m ) ) 6 ( ' ) ) e (2)

We are looking for n > 0 such that d(dé<rj£) < rj implies the inequality (2). Take
R > 1 a real number (we will chose H in a suitable way below). Let us dénote by

By the fact that the density function is a true limit on the class 9gt there exists RQ such
that R ^ RQ implies

and \0{SB{^)) - 5R((%(^'))\ < e/3 (3)
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We wil] show that
\SR(SB(^)) ~ *j?(»W))l ^ e/3

assoonas d(j4*j£') < n with r) > 0 small enough. Indeed, by lemma 2.4 we know that
if ï] > 0 is small enough, then the inequality d(^^f) < t) implies that all the points
of oé' are uniquely paired to points of ^/ within a big bail, say J3(O,r) with T = ^~1.
Letustake n suchthat

0 < Ï] <

Then T > Ro + 1. The number of points <z; of jé n B(0,T) will be exactly the num-
ber of points a\ of j&' n B(0,T) except perhaps within distance 1 from the boundary
d{B{Q,T)) of B(0,D.

(i) firstclassofpairings (aita() : thoseforwhich simultaneously at+B and a'i+B lie
within B(Q,T). Their contributions cancel each other in the différence

(ii) second class of pairings (a i f^) : those for which either (ai + B) é B(0,T) or
(flJ + B) é B(0,D. The éléments a{ and a| both lie within d{B{0,T)) + B(0,l). Then
the maxima] volume fraction occupied by the points a\ € 3(B(0,r)) + £(0,1), resp.
4 e 9(23(0,7))+£(0,1), is

volQ(B(0,r)) +3(0,1))
vol(B(0,D)

which clearly tends to zero when T tends to infini ty. Th erefore there exists rço suchthat

vol(9(B(0,D) + B(0,l))

" ^ - ^ïmJT) <€/6

For all r\ < min{no»2^+3^ weobtain

- wmum < « " " " " ^ * y M ) > < «/» (4)
From the inequalities (3), (4), we deduce (2), that is the continuity of the restriction of the
densityfunction 5 to %. D

This proof does not work in gênerai on S5 since a generic <2^-set has a density
which is presumably not given by a true limit (such that lim inf = lim sup). The question
is now: which Delone sets of constants (1,1) have a density given by a true limit?

DÉFINITION 2.6.— Thesubset

Hn:=ö-l({S+
n}) c SS

is called the locus ofdensest Systems of sphères (or sphère packings) of K". We will dénote
by Hitn the set of Systems of sphères of Hn arising from Delone sets of constants (1,1).

The loei Hn,H\,n of densest packings of IR" maybeempty.



172 Jean-Louis VERGER-GAUGRY

3. Voronoi polyhedra and local densities

We will focus our attention to Systems of sphères obtained from XR with R ^
^min and particularly from X\ giving rise to the densest sphère packings of DP. Let
^é = {aï)ieI € XR be a Delone set of constant R ^ J?min and ffi(jé) its associated
sphère packing of IR". To each sphère a% + B in &&(<*&) are associated its local cell
C(ait03{-jé)) defined by the closed convex polyhedron, called Voronoi cell or Voronoi
polyhedron at fl,

{x € DR" | ||JC - at\\ ^ ||JC - aj\\ foraU ; * /}

and its local density A(air&(^)) at a,-

The décomposition into Voronoi polyhedra of the sphère packing &8(<J&) forms a tiling
of R". Each local cell has bounded volume. The density of ffi{.j&) is then the weighted
average of the local densities &{ai,SB{jé)) where the weights are vol(C(ait^(^))), ail
strictly positive. An upper bound of the local densities is therefore an upper bound of the
density of the tiling (see lemma 3.2).

Dénote by

ax \ i e 1, at e jéfj& G XR}

the set of all possible Voronoi cells (refered to the same origin, say 0) existing in sys-
tems of sphères arising from Delone sets of R" of constant (l,i?). The number of ver-
ticesof a Voronoi cell C(a,-,â?(^)) - «/ e 1/RtH is uniformly bounded by construction
and a Voronoi cell C{ait^{^)) is uniquely determined by a finite number of points of

which are close to af\ More precisely, Rogers has shown in chapter 7 of [R] that
is entirely defined by the finite <2^-set made of the points of ffi{jé) which

are within the interior of the bail B(ai,2R). Therefore we can transport the d-topology
existing on the space of clusters lying inside the closed bail JB(0,2i?) to the set yRtTl of
Voronoi cells associated with XR and will still speak of the d-topology on this space.
Since J?™,, < R' ^ R implies XR' c X^then %>,„ c ^„ .Letusdef ine

"f/n ;= M fft n

R>0

as the set of all possible Voronoi cells (refered to the same origin, say 0) existing in sys-
tems of sphères arising from Delone sets of DS".

PROPOSITION 3.1. — Let R ^ i?min- The space of Voronoi cells 1/RtïX is a compact
space in the d-topology. The space 1/n is locally compact in the d-topology.

Proof — In [MVG], it was shown that, on the space of clusters lying inside the clo-
sed bail B(0,2R), the d-topology was exactly the topology given by the Hausdorff metric.
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Since the bail B(Q,2R) is compact, the set of <%®-sets lying inside it is compact in the
Hausdorff topology, therefore in the d-topology By transport to l/Rtn we deduce the
resuit. D

Since the local density application C{ai,&3(*jé>)) — A(a,- ,^(^)) is continuous in
the d-topology, there exists at least one Voronoi cell of minimal local density, resp. maxi-
mal local density. Let us define, for ail R ^ Rmin'

A+
Rn = sup sup

A ô = inf inf

LEMMA 3.2. — For all R ^ 1 wehave:

Proof. — Indeed, the equality cornes from the fact that any ^ ^ - s e t belonging to
Xi also belongs to XR so that the densest local cells are equallyproducedby Systems of
sphère from one or the other set of Delone sets. As for the inequalities, they are obvious.
D

The main questions we can ask are the following:

(Q3) Given the integer n ^ 2, does there exists only one minimal Voronoi cell in \kn up
to rotation and symmetry? What is/are its/their geometry?

(Q4) In a densest sphère packing in \fcn, are necessarily minimal Voronoi cells present?
does there exist densest sphère packings of R" containing none of the minimal Voronoi
cells?

(Q5) if a densest sphère packing of IR" contains minimal Voronoi cells, what is their
distribution in space?

Partial answers exist nowadays. If n = 2 or n = 3, (Q3) is answered by yes and
the geometry of the minimal Vornoi cells is given by the following results (theorem 3.4 is
citediniH]).

THEOREM 3.3 ( Thue, Fejes-Tóth ). — The densest packing of identical dises (of ra-
dius 112) in the plane is obtainedfrom a lattice packing, which is the hexagonal packing.
The maximal local density ofany dise packing is the packing constant, namely

ôt = max k{aitœ) = T^/^/Ï2

It is reached at one dise centre if and only if the Voronoi cell at this dise centre is a regular
hexagon (ofinradius 1/2).

Geometrically, the plane can be tiled with regular triangles. The minimal Voronoi
cell tiles the plane.
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THEOREM 3.4 ( McLaughlin ). — The maximal local density

= 0.7546974...

over all packings ofidentical sphères (of radius 1/2) in D&3 is reached at one sphère centre
if and only if the Voronoi cell at this sphère centre is a regular dodecahedron (ofinradius
112).

Let us remark two facts which are at the origin of Kepler's conjecture. First, the mi-
nima] Voronoi cell does not tile space in dimension 3. Indeed, it is impossible to make
a lattice packing of dodecahedra in OS3 without leaving some remaining part of space
unoccupied. Second, the maximal local density is strictly greater than the Kepler bound
TT/VÎ8 = 0.74048....

When a Voronoi cell is minimal at a sphère centre, that is a regular dodecahedron,
the first-neighbour sphères constitute the vertices of a regular icosahedron about the
central one. This is an answer to the problem of 13 sphères around a central sphère and
a solution to the controversy between Newton and Gregory (see [O]).

The observation that the minimal Voronoi cells are unique and highly symmetri-
cal for n = 2 and 3 by Verger-Gaugry [VG] led this author to investigate quasiperio-
dic sphère packings in K" from their symmetry group using the formalism of cut-and-
project schemes.

If n ^ 4 then (Q3) seems to be an open problem nowadays. The question is now:
does a suitable set of minimal Voronoi cells tile the /î-dimensional euclidean space?

4. Lattice sphère packings

Let S&n be the set of lattices of the affine space W1 (they all contain the origin). The
space &n is parametrized by the locally compact group GL(nM)/GL(n,l) and there-
fore endowed with the quotient topology arising from this homogeneous space (Oesterlé
[OU, Martinet [M]). In [MVG] it is also shown that this topology coincides on ^ n <2&)
with the restriction of the rf-topology and that corollary 2.3 is a key resuit as aperiodic
generalization of Mahler's sélection theorem for lattices (see section 4 in [MVG]).

Let L e J% be a lattice ofDT.Wewill dénote by m(L) =inf{||/||2 | / e L, l * o} the
minimal square distance between two distinct éléments of I. We will consider the pa-
cking ofidentical sphères obtained from L by putting a sphère centred at each element
of L ofradiusequalto y/m(L) /2. Let us dénote by (.,.> the standard scalar product over
Rw. If {eue2t... ,en} is an arbitrary basis of L , let us define the discriminant of L by

It is independent of the basis of L and is the square of the volume of the compact space
R"/I. It is usual to define the lattice function y on the quotient space GL(nM)/GL(n,l)
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by

y(L) = disc(L)1/"

Thisfunctioniscontinuousandsatisfies y(tL) =y(L) for ail t > 0. Therefore, to know
it on lattices which are <%lQ)'Se\s of constant 1, it is sufficient to study it on the space of
unimodular lattices which identifies to SL(nM)/SL(n,I).

PROPOSITION 4.1. — The application y: SL(nM)/SL(n,Z) — ]0,+ <x>[ is proper. The
closedset g&n := y~*({yn}) isfinite.

Proof — See Oesterlé [Ol], Martinet [M] and Gruber and Lekkerkerker [GLJ. D

The supremum yn = supL6 ̂  y(L) is reached at at least one unimodular lattice of
R" and consequentlyatat least one lattice which is a <2£S>-setof R".This constant yn is
called the Hermite constant; it is a function of n.

For any lattice I e 2^ n qM>> the density of the lattice sphère packing 63{L) =
{at + B(0,m(L)/2) \ a( e L] isgiven by

nn/2

v 2 '

DÉFINITION 4.2. — 772e lattice packing constant 5 j „ is by définition the maximal
density ofa lattice sphère packing:

6+
Ln := sup S(m(L)) = sup 6(œ(L)) = sup 5(33{L))

Let us define in a similar way:

<57n:= inf 6{âS{L))

COROLLARY4.3. — For all integer n > 1, there exist lattices L in K" of maximal,
resp. minimal, density which are uniformly discrete sets of constant 1, Le. such that

nn/2
«(»(!)) = $1» = sup *(«(!)) = H+2 yZ12, resp. S(m(L)) =

Lattices L G . % such that 5{BS(L)) is a local maximum are called extreme lattices.
The study of extreme lattices was done in particular by Voronoi and was considerably de-
veloped since then (chapter III in Martinet [M]) and generalized in the theory of systoles
by Bavard [B] and Akrout [A].

It seems reasonable to say that densest Systems of sphères do not arise in gênerai
from lattice Systems of sphères since lattices are not in gênerai Delone sets of constant
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(1,1) (see proposition 2.1). Indeed, a lattice L e Bn n <%0 is naturally a Delone set of
constant (1,R(L)) where R(L) is the covering radius of I defined by

R{L) = sup inf Hz-A| |

If I possesses so-called deep holes, the constant R(L) may be very large. Recall that a
hole in L is a point of Rn whose distance from I is a local maximum [CSJ therefore a
vertex of Voronoi cell of I . The greatest distance of any hole of L from L is the covering
radius R(L) of L. The covering radius R(L) isalso the circumradius of the Voronoi cell
of L at the origin. The existence of possible deep holes in a lattice prevents it from being
a good candidate for providing a very dense System of sphères. Let us define

= inf{RU) | L € ^ n

the infimum of all covering radii of ail lattices in ^ n <200. We have

-"min ^ AL, min

Is it true that for ail integers n ^ 2 we have i?min = J?i,min? For n = 2 theorem
3.3 gives the equality. In the case n = 3 the minimal Voronoi cell over all lattices of
3h> n àUQ) is not a regular dodecahedron (of inradius 1/2) but a rhombic dodecahedron
(with the same inradius 1/2) which is given by the Voronoi cell at the origin of the face
centred cubic lattice (densest lattice sphère packing). Nevertheless, we still have equality.

Thue - Fejes-Toth theorem 3.3 and Haies - Ferguson theorem 1.1, i.e. Kepler conjec-
ture (in dimension 3), can be reformulated as follows: for n = 2,3

hn) = 0

Let us state a gênerai conjecture.

CONJECTURE 1. — For all integer n ^ 4

d(^n <%l&,Hn) = d(S^ n qm,HXtn) > 0

This conjecture calls for the subsidiary question: is the distance between the subset
H\tfl and the locally compact subspace SBn n fytgb computable?

The main question is the proximity of H\tH to the subspace of lattices of qm which
are of constant 1. Assume that thereexists a Delone set A of IRW of constants (1,1) and
a lattice L such that

Le BnC\ <Wb, A € Hhn with d(A,L) = d{S^ n <%mtHUn) > 0

By lemma 2.4 this implies that both point sets L and A resemble within a certain dis-
tance from the origin by the phenomenon of pairings of points whatever their distribu-
tions of points are at infinity. But by définition the density of A is an asymptotic measure
of its points at infinity. This shows that the d-topology is not fine enough to deal with the
problem of the continuity of density functions in gênerai.
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