Dimensions conformes, espaces Gromov-hyperboliques et ensembles autosimilaires
Séminaire de théorie spectrale et géométrie, Tome 22 (2003-2004), pp. 153-182.
@article{TSG_2003-2004__22__153_0,
     author = {Lupo-Krebs, Guillaume and Pajot, Herv\'e},
     title = {Dimensions conformes, espaces {Gromov-hyperboliques} et ensembles autosimilaires},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {153--182},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {22},
     year = {2003-2004},
     mrnumber = {2136141},
     zbl = {1069.30038},
     language = {fr},
     url = {http://archive.numdam.org/item/TSG_2003-2004__22__153_0/}
}
TY  - JOUR
AU  - Lupo-Krebs, Guillaume
AU  - Pajot, Hervé
TI  - Dimensions conformes, espaces Gromov-hyperboliques et ensembles autosimilaires
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2003-2004
SP  - 153
EP  - 182
VL  - 22
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/item/TSG_2003-2004__22__153_0/
LA  - fr
ID  - TSG_2003-2004__22__153_0
ER  - 
%0 Journal Article
%A Lupo-Krebs, Guillaume
%A Pajot, Hervé
%T Dimensions conformes, espaces Gromov-hyperboliques et ensembles autosimilaires
%J Séminaire de théorie spectrale et géométrie
%D 2003-2004
%P 153-182
%V 22
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/item/TSG_2003-2004__22__153_0/
%G fr
%F TSG_2003-2004__22__153_0
Lupo-Krebs, Guillaume; Pajot, Hervé. Dimensions conformes, espaces Gromov-hyperboliques et ensembles autosimilaires. Séminaire de théorie spectrale et géométrie, Tome 22 (2003-2004), pp. 153-182. http://archive.numdam.org/item/TSG_2003-2004__22__153_0/

[1] C.J. Bishop, J. Tyson, Conformal dimension of the antenna set, Proceedings of the American Mathematical Society Volume 129 ( 2001), 3631-3636. | MR | Zbl

[2] M. Bonk, J. Hei Nonen, P. Koskeia, Uniformizing Gromov hyperbolic spaces, Asterisque 270 ( 2001). | Numdam | MR | Zbl

[3] M. Bonk, B. Kleiner, Rigidity of quasi-möbius group actions, Journal of Differential Geometry Volume 61 ( 2002), 81-106. | MR | Zbl

[4] M. Bonk, B. Kleiner, Quasisymmetric parametrizations of two dimensionnal metric spheres, Inventionnes Mathematicae Volume 150 ( 2002), 127-183. | MR | Zbl

[5] M. Bonk, B. Kleiner, Conformal dimension and Gromovhyperbolic groups with 2-sphere boundary, Preprint. | Zbl

[6] M. Bourdon, Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geometric And Functional Analysis Volume 7 ( 1997), 245-268. | MR | Zbl

[7] M. Bourdon, H. Pajot, Poincare inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proceedings of the American Mathematical Society Volume 127 ( 1999), 2315-2324. | MR | Zbl

[8] M. Bourdon, H. Pajot, Rigidity of quasi isometries for some hyperbolic buildings, Commentarii Mathematici Helvetici Volume 75 ( 2000), 701-736. | MR | Zbl

[9] M. Bourdon, H. Pajot, Quasi-conformal geometry and hyperbolic geometry, in "Rigidity in Dynamics and Geometry", edité par M. Burger and A. Iozzi, Springer ( 2002), 1-15. | MR | Zbl

[10] M. Bourdon, H. Pajot, Cohomologie lp et espaces de Besov, Journal für die Reine und Angewandte Mathematik Volume 558 ( 2003), 85-108. | MR | Zbl

[11] D. Burago, Y. BuragoS. Ivanov, A course in metric geometry,Graduate Studies in Mathematics 33 ( 2001), American Mathematical Society. | MR | Zbl

[12] J. Cheeger, Differentiability of Lipschitz functions on metric spaces, Geometric and Functional Analysis Volume 9 ( 1999), 428-517. | MR | Zbl

[13] M. Coornaert, T. Delzant, A. Papadopou Los, Géométrie et théorie des groupes, Les groupes hyperboliques de Gromov, Lecture Notes in Mathematics Volume 1441 ( 1990), Springer-Verlag. | MR | Zbl

[14] G. David, S. Semmes, Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications Volume 7, Oxford University Press ( 1997). | MR | Zbl

[15] E. Ghys, P. De La Harpe, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics Volume 83 ( 1990), Birkhauser. | MR | Zbl

[16] J. Heinonen, A capacity estimate on Carnot groups, Bulletin des Sciences Mathématiques Volume119 ( 1995), 475-484. | MR | Zbl

[17] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer ( 2001). | MR | Zbl

[18] J. Heinonen, P. Koskela, Definitions of quasiconformality, Inventiones Mathematicae Volume 120 ( 1995), 61-79. | MR | Zbl

[19] J. Heinonen, P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Matematica Volume 181 ( 1998),1-61. | MR | Zbl

[20] J. Heinonen, P. Koskela, N. Shanmugalingam, J. Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings, Journal d'Analyse Mathématique Volume 85 ( 2001), 87-139. | MR | Zbl

[21] D. Jerison, The Poincare inequality for vector flelds satisfying Hörmander condition, Duke Mathematical Journal Volume 53 ( 1986), 503-523. | MR | Zbl

[22] M. Kapovich, B. Kleiner, Hyperbolic groups with low-dimensional boundary, Annales Scientifiques de l'Ecole Normale Supérieure Volume 33 ( 2000), 647-669. | Numdam | MR | Zbl

[23] S. Keith, T. Laakso, Conformal Assouad dimension and modulus, Preprint ( 2003). | MR | Zbl

[24] A. Korányi, H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Advances in Mathematics Volume 111 ( 1995), 1-87. | MR | Zbl

[25] T. Laakso, Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincare inequality, Geometric and Functional Analysis Volume 10 ( 2000), 111-123. | MR | Zbl

[26] C. Loewner, On the conformal capacity in space, Journal o f Mathematical Mechanic Volume 8 ( 1959), 411-414. | MR | Zbl

[27] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press ( 1995). | MR | Zbl

[28] J. Mitchell, On Carnot-Caratheodory metrics, Journal of Differential Geometry Volume 21 ( 1985), 35-45. | MR | Zbl

[29] G.D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematical Studies Volume 78, Princeton University Press ( 1973). | MR | Zbl

[30] H. Pajot, Analyse dans les espaces singuliers ; Rectiflabilité ; Géométrie quasi-conforme et géométrie hyperbolique, Texte pour l'habilitation à diriger des recherches, Université de Cergy-Pontoise ( 2002).

[31] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang 1, Annals of Mathematics Volume 129 ( 1989), 1-60. | MR | Zbl

[32] N. Shanmugalingam, Newtonian spaces : an extension of Sobolev spaces to metric measure spaces, Revista Mathematica Iberoamericana Volume 16 ( 2000), 243-279. | MR | Zbl

[33] D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, dans "Riemann surfaces and related topics :Proceedings of the 1978 Stony Brook conference" PrincetonUniversity Press ( 1981), 465-496. | MR | Zbl

[34] J. Tyson, Quasiconformality and quasisymmetry in metric spaces, Annales Academiae Scientiarum Fennicae Volume 23 ( 1998), 525-548. | MR | Zbl

[35] J. Vaisälä, Lectures on n-dimensional quasiconformal mappings, Lectures Notes in Mathematics Volume 229 ( 1971). | MR

[36] N. Varopoulos, Fonctions harmoniques sur les groupes de Lie, Comptes Rendus de l'Académie des Sciences de Paris Volume 309 ( 1987), 519-521. | MR | Zbl