Sur des problèmes de la géométrie systolique
Séminaire de théorie spectrale et géométrie, Tome 22 (2003-2004), pp. 71-82.
@article{TSG_2003-2004__22__71_0,
     author = {Balacheff, Florent},
     title = {Sur des probl\`emes de la g\'eom\'etrie systolique},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {71--82},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {22},
     year = {2003-2004},
     mrnumber = {2136136},
     zbl = {1083.53043},
     language = {fr},
     url = {http://archive.numdam.org/item/TSG_2003-2004__22__71_0/}
}
TY  - JOUR
AU  - Balacheff, Florent
TI  - Sur des problèmes de la géométrie systolique
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2003-2004
SP  - 71
EP  - 82
VL  - 22
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/item/TSG_2003-2004__22__71_0/
LA  - fr
ID  - TSG_2003-2004__22__71_0
ER  - 
%0 Journal Article
%A Balacheff, Florent
%T Sur des problèmes de la géométrie systolique
%J Séminaire de théorie spectrale et géométrie
%D 2003-2004
%P 71-82
%V 22
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/item/TSG_2003-2004__22__71_0/
%G fr
%F TSG_2003-2004__22__71_0
Balacheff, Florent. Sur des problèmes de la géométrie systolique. Séminaire de théorie spectrale et géométrie, Tome 22 (2003-2004), pp. 71-82. http://archive.numdam.org/item/TSG_2003-2004__22__71_0/

[1] Babenko, I. & Balacheff, F., Géométrie systolique des sommes connexes et des revêtements cycliques, pre-print (www.math.univ-montp2.fr/prepublications/04-05.pdf).

[2] Bavard, C., Inégalité isosystolique pour la bouteille de Klein, Math. Ann., 274 ( 1986), 439-441. | EuDML | MR | Zbl

[3] Birkhoff, G., Dynamicals Systems with two degrees of freedom, Trans. Amer. Math. Soc, 18 ( 1917), 199-300. | JFM | MR

[4] Bollobás, B. & Szemerédi, E., Girth of sparse graphs, J. Graph Theory, 39 ( 2002), 194-200. | MR

[5] Buchner, M., Simplicial structure of real analytic cut locus, Proc. Amer. Math. Soc, 64 ( 1977), 118-121. | MR | Zbl

[6] Buser, P. &Sarnak, P., On the period matrix of a Riemann surface of large genus, Inv. Math., 117 ( 1994), 27-56. | EuDML | MR | Zbl

[7] Caiabi, C. & Cao, J., Simple closed geodesics on convex surfaces, J. Differential Geometry, 36 ( 1992), 517-549. | MR | Zbl

[8] Croke, C., Area and the length of the shortest closed geodesic, J. Differential Geometry, 27 ( 1988), 1-22. | MR | Zbl

[9] Gromov, M., Filling Riemannian Manifolds, J. Differential Geometry, 18 ( 1983), 1-147. | MR | Zbl

[10] Gromov, M., Systoles and intersystolic inequalities, Actes de la Table Ronde de Géométrie Différentielle, Sem. Congr., 1 ( 1996), Soc Math. France, 291-362. | MR | Zbl

[11] Hirsch, M., Differential Topology, Graduate Texts in Math., Springer Verlag New-York, 33, 1976. | MR | Zbl

[12] Klingenberg, W., Lectures on closed geodesics, Grundlehren Math. Wiss., 230, Springer Verlag, Berlin, 1978. | MR | Zbl

[13] Kodani, S., On two dimensional isosystolic inequalities, Kodai Math. J., 10 ( 1987), 314-327. | MR | Zbl

[14] Maeda, M., The length of a closed geodesic on a compact surface, Kyushu J. Math., 48-1 ( 1994), 9-18. | MR | Zbl

[15] Nabutovsky, A. & Rotman, R., The length of the shortest closed geodesic on a 2-dimensional sphere, Int. Math. Res. Not., 23 ( 2002), 1211-1222. | MR | Zbl

[16] Nabutovsky, A. & Rotman, R., Upper bounds on the length ofa shortest closed geodesic and quantitative Hurewicz theorem,J. Eur. Math. Soc, 5- 3 ( 2003), 203-244. | MR | Zbl

[17] Nabutovsky, A. & Rotman, R., Volume, Diameter and the minimal mass of a stationnary 1-cycle, arXiv :Math.DG/0201269, 2002. | MR | Zbl

[18] Pu, R., Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math., 2 ( 1952), 55-72. | MR | Zbl

[19] Sabourau, S., Filling radius and short closed geodesic of the sphere, Bull. SMF, 132 ( 2004), 105-136. | Numdam | MR | Zbl

[20] Sabourau, S., Global and local volume bounds and the shortest geodesic loop, à paraître dans Communications in Analysis and Geometry. | Zbl