Lamination duale à un arbre réel
Séminaire de théorie spectrale et géométrie, Volume 24  (2005-2006), p. 9-21

Nous présentons des résultats reliant un arbre réel muni d’une action par isométries du groupe libre, sa lamination duale et les courants portés par cette dernière.

@article{TSG_2005-2006__24__9_0,
     author = {Hilion, Arnaud},
     title = {Lamination duale \`a un arbre r\'eel},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {24},
     year = {2005-2006},
     pages = {9-21},
     doi = {10.5802/tsg.237},
     mrnumber = {2355555},
     language = {fr},
     url = {http://www.numdam.org/item/TSG_2005-2006__24__9_0}
}
Hilion, Arnaud. Lamination duale à un arbre réel. Séminaire de théorie spectrale et géométrie, Volume 24 (2005-2006) , pp. 9-21. doi : 10.5802/tsg.237. http://www.numdam.org/item/TSG_2005-2006__24__9_0/

[1] Bestvina, M. -trees in topology, geometry, and group theory, Handbook of geometric topology, North-Holland, Amsterdam (2002), pp. 55-91 | MR 1886668 | Zbl 0998.57003

[2] Casson, A.; Bleiler, S. Automorphisms of surfaces after Nielsen and Thurston, Cambridge University Press, Cambridge, London Mathematical Society Student Texts, Tome 9 (1988) | MR 964685 | Zbl 0649.57008

[3] Cohen, M.; Lustig, M. Very small group actions on R-trees and Dehn twist automorphisms, Topology, Tome 34 (1995) no. 3, pp. 575-617 | MR 1341810 | Zbl 0844.20018

[4] Coulbois, T.; Hilion, A.; Levitt, G.; Lustig, M. (en préparation)

[5] Coulbois, T.; Hilion, A.; Lustig, M. -trees and laminations for free groups III : Currents and dual -tree metrics (2005) (preprint available on http://junon.u-3mrs.fr/hilion/)

[6] Coulbois, T.; Hilion, A.; Lustig, M. Non uniquely ergodic R-trees are topologically determined by their algebraic lamination (2005) (preprint available on http://junon.u-3mrs.fr/hilion/)

[7] Coulbois, T.; Hilion, A.; Lustig, M. -trees and laminations for free groups I : Algebraic laminations (2006) (arXiv :math.GR/0609416)

[8] Coulbois, T.; Hilion, A.; Lustig, M. -trees and laminations for free groups II : The dual lamination of an -tree (2007) (arXiv :math.GR/0702281)

[9] Fathi, A.; Laudenbach, F.; Poenaru, V. Travaux de Thurston sur les surfaces, Société Mathématique de France, Paris, Astérisque, Tome 66-67 (1976) | Numdam | Zbl 0406.00016

[10] Kapovich, I. Currents on free groups (2005) (ArXiv :math.GR/0311053) | MR 2216713

[11] Kapovich, I.; Lustig, M. The actions of Out(F k ) on the boundary of Outer space and on the space of currents : minimal sets and equivariant incompatibility (2006) (arXiv :math/0605548) | Zbl 05166241

[12] Kapovich, Michael Hyperbolic manifolds and discrete groups, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 183 (2001) | MR 1792613 | Zbl 0958.57001

[13] Keynes, H.; Newton, D. A “minimal”, non-uniquely ergodic interval exchange transformation, Math. Z., Tome 148 (1976) no. 2, pp. 101-105 | Zbl 0308.28014

[14] Levitt, G.; Lustig, M. Irreducible automorphisms of F n have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu, Tome 2 (2003), pp. 59-72 | MR 1955207 | Zbl 1034.20038

[15] Lustig, M. -trees - currents - laminations : a delicate relationship (2007) (preprint)

[16] Shalen, P. Dendrology of groups : an introduction, Essays in group theory, Springer, New York (Math. Sci. Res. Inst. Publ.) Tome 8 (1987), pp. 265-319 | MR 919830 | Zbl 0649.20033

[17] Veech, W. Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, Trans. Amer. Math. Soc., Tome 140 (1969), pp. 1-33 | MR 240056 | Zbl 0201.05601

[18] Vogtmann, K. Automorphisms of free groups and outer space, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), Tome 94 (2002), pp. 1-31 | MR 1950871 | Zbl 1017.20035